精英家教网 > 初中数学 > 题目详情
如图,C是⊙O的直径AB延长线上一点,点D在⊙O上,且∠A=30°,∠BDC=
1
2
∠ABD.
(1)求证:CD是⊙O的切线;
(2)若OFAD分别交BD、CD于E、F,BD=2,求OE及CF的长.
(1)证明:连接OD.
∵AB是⊙O的直径,
∴∠ADB=90°.
∵∠A=30°,∴∠ABD=60°.
∴∠BDC=
1
2
∠ABD=30°.
∵OD=OB,
∴△ODB是等边三角形.
∴∠ODB=60°.
∴∠ODC=∠ODB+∠BDC=90°.
即OD⊥DC.
∴CD是⊙O的切线;

(2)∵OFAD,∠ADB=90°,
∴OF⊥BD,∠BOE=∠A=30°.
∴DE=BE=
1
2
BD=1.
在Rt△OEB中,OB=2BE=2,OE=
OB2-BE2
=
3

∵OD=OB=2,∠C=∠ABD-∠BDC=30°,∠DOF=30°,
∴CD=2
3
,DF=OD•tan30°=
2
3
3

∴CF=CD-DF=2
3
-
2
3
3
=
4
3
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为
5
,过点C作⊙A的切线交x轴于点B(-4,0).

(1)求切线BC的解析式;
(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;
(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,过半径为6cm的⊙O外一点P引圆的切线PA,PB,连接PO交⊙O于F,过F作⊙O的切线,交PA,PB分别于D,E,如果PO=10cm,∠APB=40°.
求:(1)△PED的周长;(2)∠DOE的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AD的延长线相交于点F,且AD=2
7
,sin∠BCD=
3
4

(1)求证:CDBF;
(2)求弦CD的长;
(3)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图△ABC中边BC所在直线与圆相切于C点,边AC交圆于另一点D,若∠A=70°,∠B=60°,则劣弧
CD
的度数是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△ABC中,∠C=90°,AC=6,BC=8,点O在CB上,且AO平分∠BAC,CO=3(如图所示),以点O为圆心,r为半径画圆.
(1)r取何值时,⊙O与AB相切;
(2)r取何值时,⊙O与AB有两个公共点;
(3)当⊙O与AB相切时,设切点为D,在BC上是否存在点P,使△APD的面积为△ABC的面积的一半?若存在,求出CP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

⊙O的半径为4cm,点A在直线l上,若AO=4cm,则直线l与⊙O的位置关系是(  )
A.相交B.相切C.相离D.相切或相交

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,AB是⊙O的直径,AC切⊙O于点A,且AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AP、AF.
求证:
(1)AFBE;
(2)△ACP△FCA;
(3)CP=AE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.
证明:(1)BD=DC;(2)DE是⊙O切线.

查看答案和解析>>

同步练习册答案