精英家教网 > 初中数学 > 题目详情
(2013•黄石)如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.
(1)如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D,请问点D是否是AB边上的黄金分割点,并证明你的结论;
(2)若△ABC在(1)的条件下,如图3,请问直线CD是不是△ABC的黄金分割线,并证明你的结论;
(3)如图4,在直角梯形ABCD中,∠D=∠C=90°,对角线AC、BD交于点F,延长AB、DC交于点E,连接EF交梯形上、下底于G、H两点,请问直线GH是不是直角梯形ABCD的黄金分割线,并证明你的结论.
分析:(1)证明AD=CD=BC,证明△BCD∽△BCA,得到
BC
AB
=
BD
BC
,则有
AD
AB
=
BD
AD
,所以点D是AB边上的黄金分割点;
(2)证明S△ACD:S△ABC=S△BCD:S△ACD,直线CD是△ABC的黄金分割线;
(3)根据相似三角形比例线段关系,证明BG=GC,AH=HD,则梯形ABGH与梯形GCDH上下底分别相等,高也相等,S梯形ABGH=S梯形GCDH=
1
2
S梯形ABCD,所以GH不是直角梯形ABCD的黄金分割线.
解答:解:(1)点D是AB边上的黄金分割点.理由如下:
∵AB=AC,∠A=36°,
∴∠B=∠ACB=72°.
∵CD是角平分线,
∴∠ACD=∠BCD=36°,
∴∠A=∠ACD,
∴AD=CD.
∵∠CDB=180°-∠B-∠BCD=72°,
∴∠CDB=∠B,
∴BC=CD.
∴BC=AD.
在△BCD与△BCA中,∠B=∠B,∠BCD=∠A=36°,
∴△BCD∽△BCA,
BC
AB
=
BD
BC

AD
AB
=
BD
AD

∴点D是AB边上的黄金分割点.

(2)直线CD是△ABC的黄金分割线.理由如下:
设△ABC中,AB边上的高为h,则S△ABC=
1
2
AB•h,S△ACD=
1
2
AD•h,S△BCD=
1
2
BD•h.
∴S△ACD:S△ABC=AD:AB,S△BCD:S△ACD=BD:AD.
由(1)知,点D是AB边上的黄金分割点,
AD
AB
=
BD
AD

∴S△ACD:S△ABC=S△BCD:S△ACD
∴CD是△ABC的黄金分割线.

(3)直线不是直角梯形ABCD的黄金分割线.理由如下:
∵BC∥AD,
∴△EBG∽△EAH,△EGC∽△EHD,
BG
AH
=
EG
EH
GC
HD
=
EG
EH

BG
AH
=
GC
HD
,即
BG
GC
=
AH
HD
 ①
同理,由△BGF∽△DHF,△CGF∽△AHF得:
BG
HD
=
GC
AH
,即
BG
GC
=
HD
AH
 ②
由①、②得:
AH
HD
=
HD
AH

∴AH=HD,
∴BG=GC.
∴梯形ABGH与梯形GCDH上下底分别相等,高也相等,
∴S梯形ABGH=S梯形GCDH=
1
2
S梯形ABCD
∴GH不是直角梯形ABCD的黄金分割线.
点评:本题考查了相似三角形的判定与性质、含36°角的等腰三角形、黄金分割、直角梯形等知识点.试题难度不大,理解题中给出的黄金分割点、黄金分割线的概念是正确解题的基础.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黄石)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图,已知某容器都是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄石)如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=-x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=-
1
2
时,y取最大值
25
4

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=
1
2
x+a与(1)中所求的抛物线交于点M、N,两点,问:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.
②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

同步练习册答案