精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2+bx+c的部分图象;如图
(1)求该抛物线的表达式;
(2)写出该抛物线的顶点坐标;
(3)观察图象指出,当x分别取何值时,有y>0,y<0;
(4)若抛物线与x轴的交点分别为点A与点B(A在B左侧),在x轴上方的抛物线上是否存在点P,使S△PAB=8?若存在,请求出P点坐标;若不存在,请说明理由.
(1)∵抛物线y=x2+bx+c的部分图象可得:
图象经过:(-1,0),对称轴为:x=1,
0=1-b+c
-
b
2
=1

解得:
b=-2
c=-3

∴该抛物线的表达式为:y=x2-2x-3;

(2)∵y=x2-2x-3;
=(x-1)2-4,
∴该抛物线的顶点坐标为:(1,-4).

(3)∵图象经过:(-1,0),对称轴为:x=1,
∴图象与x轴另一交点坐标为:(3,0),
∴当x<-1或x>3时,y>0,-1<x<3时,y<0;

(4)存在,
∵S△PAB=8,AB=4,
∴P点纵坐标为4,
∴4=x2-2x-3;
解得:x1=1-2
2
,x2=1+2
2

∴P1(1-2
2
,4),P2(1+2
2
,4).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c的图象过点A(2,4),顶点的横坐标为
1
2
,它的图象与x轴交于两点B(x1,0)、C(x2,0),与y轴交于点D,且x12+x22=13.试问:y轴上是否存在点P,使得△POB与△DOC相似(O为坐标原点)?若存在,请求出过P、B两点直线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象如图所示,那么这个函数的解析式为(  )
A.y=
1
3
x2+
2
3
x+1
B.y=
1
3
x2+
2
3
x-1
C.y=
1
3
x2-
2
3
x-1
D.y=
1
3
x2-
2
3
x+1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx-4与x轴交于A(-4,0)、B(3,0)两点,与y轴交于点C.

(1)求抛物线的函数关系式;
(2)点P是抛物上第三象限内的一动点,当点P运动到什么位置时,四边形ABCP的面积最大?求出此时点P的坐标和四边形ABCP的面积;
(3)点M在抛物线对称轴上,点N是平面内一点,是否存在这样的点M、N,使得以点M、N、B、C为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,
2
)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某宾馆有客房100间供游客居住,当每间客房的定价为每天180元时,客房会全部住满.当每间客房每天的定价每增加10元时,就会有5间客房空闲.(注:宾馆客房是以整间出租的)
(1)若某天每间客房的定价增加了20元,则这天宾馆客房收入是______元;
(2)设某天每间客房的定价增加了x元,这天宾馆客房收入y元,则y与x的函数关系式是______;
(3)在(2)中,如果某天宾馆客房收入y=17600元,试求这天每间客房的价格是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场销售一种成本为每千克40元的水产品.据市场分析,按每千克50元销售,一个月能售出500千克;在此基础上,销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,求月销售利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不写处x的取值范围).
(3)商场销售此产品时,要想每月成本不超过10000元,且月销售利润达到8000元,销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,D是图象上的一点,M为抛物线的顶点.已知A(-1,0),C(0,5),D(1,8).
(1)求抛物线的解析式.
(2)求△MCB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

初三(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.
小组讨论后,同学们做了以下三种试验:

请根据以上图案回答下列问题:
(1)在图案(1)中,如果铝合金材料总长度(图中所有黑线的长度和)为6米,当AB为1米,长方形框架ABCD的面积是______m2
(2)在图案(2)中,如果铝合金材料总长度为6米,设AB为x米,长方形框架ABCD的面积为S=______(用含x的代数式表示);当AB=______时米,长方形框架ABCD的面积S最大;在图案(3)中,如果铝合金材料总长度为l米,设AB为x米,当AB是多少米时,长方形框架ABCD的面积S最大.

查看答案和解析>>

同步练习册答案