【题目】先化简,再求值:(x+5)(x-1)+(x-2)2,其中x=-2.
科目:初中数学 来源: 题型:
【题目】某校在九年级学生中开展以“每天数学家庭作业完成时间”设置的一个问题,有以下选项:
A.0~0.5小时B.0.5~1个小时 C.1个小时~1.5个小时 D.1.5个小时以上
在随机调查了九(1)班学生后,根据相关数据给出如图所示的统计图.
(1)该校九(1)班学生 人;做数学家庭作业1.5个小时以上的占 ;
(2)补全频数直方图;
(3)已知该校九年级共400名学生,据此推算,该校九年级学生中,“做数学家庭作业1.5个小时以上”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解答
(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数y=x2+2x﹣1的图象与性质,下列说法中正确的是( )
A.顶点坐标为(1,2)
B.当x<﹣1时,y随x的增大而增大
C.对称轴是直线x=﹣1
D.最小值是﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在Rt△ABC中,∠C=90°, ∠B=30°,AC=1,CD⊥AB,垂足为D,现将△ACD绕D点顺时针旋转得到△A‘C’D, 旋转时间为t秒,△ACD绕D点旋转的角速度/秒(每秒转10度) .
(1)旋转时间t= 秒时,A‘C’∥AB;
(2)△ACD绕D点顺时针旋转一周(3600),斜边AC扫过的面积为 ;
(3)如图②,连接A’C、 C’B.
①若6<t<9,求证: 为定值;
②当t>9时,上述结论还成立吗?如成立直接写出比值,不成立请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,在数轴上点, 所对应的数是, .
对于关于的代数式,我们规定:当有理数在数轴上所对应的点为之间(包括点, )的任意一点时,代数式取得所有值的最大值小于等于,最小值大于等于,则称代数式,是线段的封闭代数式.
例如,对于关于的代数式,当时,代数式取得最大值是;当时,代数式取得最小值是,所以代数式是线段的封闭代数式.
问题:()关于代数式,当有理数在数轴上所对应的点为之间(包括点, )的任意一点时,取得的最大值和最小值分别是__________.
所以代数式__________(填是或不是)线段的封闭代数式.
()以下关的代数式:
①;②;③;④.
是线段的封闭代数式是__________,并证明(只需要证明是线段的封闭代数式的式子,不是的不需证明).
()关于的代数式是线段的封闭代数式,则有理数的最大值是__________,最小值是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=kx+2与x轴、y轴分别交于点A(-1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).
(1)求k的值;
(2)求反比例函数的解析式;
(3)过x轴上的点D(a,0)作平行于y轴的直线(a>1),分别与直线AB和双曲线 交于点P、Q,且PQ=2QD,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒(0≤t≤6),设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com