精英家教网 > 初中数学 > 题目详情
2、如图,在△ABE和△ACD中,给出以下四个论断:
(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)AD⊥DC,AE⊥BE.
以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程.
分析:本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件证明全等.利用全等三角形对应角,对应边相等解题.
解答:解:(1)已知:如图,在△ABE和△ACD中,AD=AE;AM=AN;AD⊥DC,AE⊥BE.
求证:AB=AC.
证明:在△ADM和△AEN中,
∵AD=AE;AM=AN;AD⊥DC,AE⊥BE,
∴∠D=∠E.
∴△ADM≌△AEN(HL).
∴∠DAM=∠EAN.
∴∠DAC=∠EAB.
∴△DAC≌△EAB(ASA).
∴AB=AC.

(2)已知:如图,在△ABE和△ACD中,AB=AC,AD=AE,AD⊥DC,AE⊥BE.求证:AM=AN.
证明:在△ACD和△ABE中,
∵AC=AB,AD=AE,AD⊥DC,AE⊥BE,
∴△ACD≌△ABE(HL),
∴∠CAD=∠BAE,
∴∠DAM=∠EAN.
在△ADM和△AEN中,
∵∠D=∠E,AD=AE,∠DAM=∠EAN,
∴△ADM≌△AEN(ASA),
∴AM=AN.

(3)已知:如图,在△ABE和△ACD中,AB=AC,AM=AN,AD⊥DC,AE⊥BE.
求证:AD=AE.
证明:在△AMC和△ANB中,
∵AM=AN,AC=AB,∠MAC=∠NAB,
∴△AMC≌△ANB(SAS),
∴∠C=∠B,
在△ACD和△ABE中,
∵∠D=∠E,∠C=∠B,AC=AB,
∴△ACD≌△ABE(AAS),
∴AD=AE.
点评:本题考查三角形全等的识别方法及全等三角形的判定与性质,做题时思考要全面,答案有多种.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABE和△BCD中,AB=BE=EA,BC=CD=DB,且两个三角形在线段AC同侧,则下列式子中错误的是(  )
A、△ABD≌△EBCB、△NBC≌△MBDC、△ABM≌△EBND、△ABE≌△BCD

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABE和△ACD中,AE=AD,添加一个条件
AB=AC或∠AEB=∠ADC或∠B=∠C.
(只添加一个,符合要求即可),使△ABE≌△ACD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使其组成一个正确的命题.
已知:
在△ABE和△ACD中,AD=AE;AM=AN;AD⊥DC,AE⊥BE
在△ABE和△ACD中,AD=AE;AM=AN;AD⊥DC,AE⊥BE

求证:
AB=AC
AB=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABE和△ACD中,给出以下四个论断:
【小题1】AB=AC
【小题2】AD=AE;
【小题3】AM=AN;

查看答案和解析>>

同步练习册答案