精英家教网 > 初中数学 > 题目详情
在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由;
(2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.
(1)不同.理由如下:
∵往、返距离相等,去时用了2小时,而返回时用了2.5小时,
∴往、返速度不同(2分)

(2)设返程中y与x之间的表达式为y=kx+b,
120=2.5k+b
0=5k+b
,解之,得
k=-48
b=240
.(5分)
∴y=-48x+240.(2.5≤x≤5)(评卷时,自变量的取值范围不作要求)(6分)

(3)当x=4时,汽车在返程中,∴y=-48×4+240=48.
∴这辆汽车从甲地出发4h时与甲地的距离为48km.(8分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)如图,过点A作⊙O1的切线与y轴交于点C,点O到直线AB的距离为
12
5
,sin∠ABC=
3
5
,求直线AC的解析式;
(2)若⊙O1经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b的图象可以看作是由直线y=2x向上平移6个单位长度得到的,且y=kx+b与两坐标轴围成的三角形面积被一正比例函数分成面积的比为1:2的两部分,求这个正比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某中学九年级甲、乙两班同学商定举行一次远足活动,A、B两地相离10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地,两班同学各自到达目的地后都就地活动.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1千米、y2千米,y1、y2与x的函数关系图象如图所示,根据图象解答下列问题:
(1)分别求出y1、y2与x的函数关系式;
(2)求甲、乙两班学生出发后,几小时相遇?
(3)求甲班同学去远足的过程中,步行多少时间后两班同学之距为9千米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:⊙C的圆心C在x轴上,AB是⊙C的直径,⊙C与y轴交于D、E两点,且∠ACD=∠FDO.
(1)求证:直线FD是⊙C的切线;
(2)若OC:OA=1:2,DE=4
2
,求直线FD的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如表:
类 别电视机洗衣机
进价(元/台)18001500
售价(元/台)20001600
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,巳知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为(  )
A.3B.
5
3
3
C.4D.
5
3
4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x(时)之间的函数关系式是______,自变量x必须满足______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

附加题:将长为30cm,宽为10cm的长方形白纸,按如图所示的方发粘合起来,粘合部分的宽为3cm.设x张白纸粘合后的总长度为ycm,写出y与x的函数关系式,并求出当x=20时,y的值.

查看答案和解析>>

同步练习册答案