【题目】有一种长方体集装箱,其内空长为5米,集装箱截面的高4.5米,宽3.4米,用这样的集装箱运长为5米,横截面的外圆直径为0.8米的圆柱形钢管,为了尽可能多运,排的方案是:圆柱长5米放置于集装箱内空长,圆柱两底面放置于集装箱截面,截面的排法是:
A. 横排,每行分别为4、3、4、3、4、3
B. 横排,每行分别为4、4、4、4、4、3
C. 竖排,每列分别为5、4、5、4、5
D. 竖排,每列分别为5、5、5、5、4
科目:初中数学 来源: 题型:
【题目】(1)如图1,Rt△ABC中,∠ACB=90°,点D、E在边AB上,且AD=AC,BE=BC,求∠DCE的度数;
(2)如图2,在△ABC中,∠ACB=40°,点D、E在直线AB上,且AD=AC,BE=BC,则∠DCE的度数;
(3)在△ABC中,∠ACB=n°(0<n<180°),点D、E在直线AB上,且AD=AC,BE=BC,求∠DCE的度数(直接写出答案,用含n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB, OE平分∠AOC, OF平分∠BOC.
(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度数;
(2)猜想∠EOF与∠AOB的数量关系;
(3)若∠AOB+∠EOF=156°,则∠EOF是多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们在学习“实数”时,画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交x轴于点A”,请根据图形回答下列问题:
(1)线段OA的长度是多少?(要求写出求解过程)
(2)这个图形的目的是为了说明什么?
(3)这种研究和解决问题的方式,体现了 的数学思想方法.(将下列符合的选项序号填在横线上)
A、数形结合;B、代入;C、换元;D、归纳.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向点O运动.
(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;
(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学计划组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:
李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”
小芳:“我们学校八年级师生昨天在这个客运公司租用4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”
小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”
根据以上对话,解答下列问题:
(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?
(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB为⊙O的直径,点C为的中点,BD为弦,CE⊥BD于点E,
(1)如图1,求证:CE=DE;
(2)如图2,连接OE,求∠OEB的度数;
(3)如图3,在(2)条件下,延长CE,交直径AB于点F,延长EO,交⊙O于点G,连接BG,CE=2,EF=3,求△EBG的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com