【题目】杨辉是中国南宋末年的一位杰出的数学家,数学教育家.杨辉三角是杨辉的一大重要研究成果,其中蕴含了许多优美的规律.古今中外,许多的数学家都曾对其深入研究过,并将研究结果应用于实践.其中杨辉三角如下
(1)第5行的数和为________
(2)观察每行数的和,并归纳出第行数的和为________
(3)第三斜行的数分别为1,3,6,10,…,请依此规律写出第5个数为 .请归纳得出第三斜行第个数的表达式________(用含有的表达式表示)
【答案】(1)16;(2)2n1;(3)15,
【解析】
(1)根据有理数加法将第五行的数相加即可;
(2)根据前几行数的和的规律,后一个数是前一个数的2倍,即可求得第n行数的和;
(3)根据第三斜行的数的规律即可求得第5个数以及第三斜行第n个数的表达式.
解:(1)第五行数的和为:1+4+6+4+1=16.
故答案为16.
(2)∵第一行数的和为1=20,第二行数的和为2=21,第三行数的和为4=22,
第四行数的和为8=23,第五行数的和为16=24,…
∴第n行数的和为2n1.
故答案为:2n1.
(3)第三斜行的数:1,3=1+2,6=1+2+3,
10=1+2+3+4,
∴第5个数为1+2+3+4+5=15,
∴第三斜行第n个数为1+2+3+4+5+…+n=
故答案为:15,
科目:初中数学 来源: 题型:
【题目】在数学问题中,我们常用几何方法解决代数问题,借助数形结合的方法使复杂问题简单化.
材料一:我们知道|a|的几何意义是:数轴上表示数a的点到原点的距离;|a﹣b|的几何意义是:数轴上表示数a,b的两点之间的距离;|a+b|的几何意义是:数轴上表示数a,﹣b的两点之间的距离;根据绝对值的几何意义,我们可以求出以下方程的解.
(1)|x﹣3|=4
解:由绝对值的几何意义知:
在数轴上x表示的点到3的距离等于4
∴x1=3+4=7,x2=3﹣4=﹣1
(2)|x+2|=5
解:∵|x+2|=|x﹣(﹣2)|,∴其绝对值的几何意义为:在数轴上x表示的点到﹣2的距离等于5.∴x1=﹣2+5=3,x2=﹣2﹣5=﹣7
材料二:如何求|x﹣1|+|x+2|的最小值.
由|x﹣1|+|x+2|的几何意义是数轴上表示数x的点到表示数1和﹣2两点的距离的和,要使和最小,则表示数x的这点必在﹣2和1之间(包括这两个端点)取值.
∴|x﹣1|+|x+2|的最小值是3;由此可求解方程|x﹣1|+|x+2|=4,把数轴上表示x的点记为点P,由绝对值的几何意义知:当﹣2≤x≤1时,|x﹣1|+|x+2|恒有最小值3,所以要使|x﹣1|+|x+2|=4成立,则点P必在﹣2的左边或1的右边,且到表示数﹣2或1的点的距离均为0.5个单位.
故方程|x﹣1|+|x+2|=4的解为:x1=﹣2﹣0.5=﹣2.5,x2=1+0.5=1.5.
阅读以上材料,解决以下问题:
(1)填空:|x﹣3|+|x+2|的最小值为 ;
(2)已知有理数x满足:|x+3|+|x﹣10|=15,有理数y使得|y﹣3|+|y+2|+|y﹣5|的值最小,求x﹣y的值.
(3)试找到符合条件的x,使|x﹣1|+|x﹣2|+…+|x﹣n|的值最小,并求出此时的最小值及x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一辆列车在某次运行中速度(千米/小时)关于时间(分钟)的图象,根据图象回答下列问题.
(1)列车共运行了多少分钟?
(2)列车开动后,匀速行驶了几分钟?第3分钟时的速度是多少?
(3)列车的速度从0千米/小时加速到300千米/小时,共用了多长时间?
(4)列车从第几分钟开始减速?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,六边形ABCDEF与六边形A′B′C′D′E′F′相似.
求:(1)相似比;
(2)∠A和∠B′的度数;
(3)边CD,EF,A′F′,E′D′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,
∠A+∠2=90°.求证:AB∥CD.
证明:如图,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,两直线平行)
______________
∴∠AFC+∠2=90°(等式性质)
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(内错角相等,两直线平行)
请你仔细观察下列序号所代表的内容:
①∴∠AOE=90°(垂直的定义)
②∴∠AFB=90°(等量代换)
③∵AF⊥CE(已知)
④∵∠AFC+∠AFB+∠2=180°(平角的定义)
⑤∴∠AOE=∠AFB(两直线平行,同位角相等)
横线处应填写的过程,顺序正确的是( )
A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?
(2)请把条形统计图补充完整;
(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形中,,,是上的一个动点,由向运动(与、不重合),速度为每秒,是延长线上一点,与点以相同的速度由向延长线方向运动(不与重合),连结交AB于.
(1)如图1,若,,求点P运动几秒后,.
(2)在(1)的条件下,作于F,在运动过程中,线段长度是否发生变化,如果不变,求出的长;如果变化,请说明理由.
(3)如图3,当时,平行四边形的面积是,那么在运动中是否存在某一时刻,点P,Q关于点E成中心对称,若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com