分析 根据平行线的性质得出∠F=∠M,∠EGF=∠NHM,求出GF=HM,根据全等三角形的判定得出即可.
解答 证明:∵EF∥MN,EG∥HN,
∴∠F=∠M,∠EGF=∠NHM,
∵FH=MG,
∴FH+HG=MG+HG,
∴GF=HM,
在△EFG和△NMH中
$\left\{\begin{array}{l}{∠F=∠M}\\{GF=HM}\\{∠EGF=∠NHM}\end{array}\right.$
∴△EFG≌△NMH(ASA).
点评 本题考查了全等三角形的判定,平行线的性质的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有ASA,AAS,SAS,SSS.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com