精英家教网 > 初中数学 > 题目详情
己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧)点
A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.
(1)A(-2,0),B(6,0);(2) y=-x2+2x+6,抛物线对称轴为x=2,顶点坐标为(2,8);(3) P(2,4);(4)2.

试题分析:(1)解一元二次方程x2-4x-12=0可求A、B两点坐标;
(2)将A、B两点坐标代入二次函数y=ax2+bx+6,可求二次函数解析式,配方为顶点式,可求对称轴及顶点坐标;
(3)作点C关于抛物线对称轴的对称点C′,连接AC′,交抛物线对称轴于P点,连接CP,P点即为所求;
(4)由DQ∥AC得△BDQ∽△BCA,利用相似比表示△BDQ的面积,利用三角形面积公式表示△ACQ的面积,根据S△CDQ=S△ABC-S△BDQ-S△ACQ,运用二次函数的性质求面积最大时,m的值.
试题解析:(1)A(-2,0),B(6,0);
(2)将A、B两点坐标代入二次函数y=ax2+bx+6,得

解得
∴y=-x2+2x+6,
∵y=-(x-2)2+8,
∴抛物线对称轴为x=2,顶点坐标为(2,8);
(3)如图,作点C关于抛物线对称轴的对称点C′,连接AC′,交抛物线对称轴于P点,连接CP,

∵C(0,6),
∴C′(4,6),
设直线AC′解析式为y=ax+b,则

解得
∴y=x+2,当x=2时,y=4,
即P(2,4);
(4)依题意,得AB=8,QB=6-m,AQ=m+2,OC=6,则S△ABC=AB×OC=24,
∵由DQ∥AC,∴△BDQ∽△BCA,

即S△BDQ=
又S△ACQ=AQ×OC=3m+6,
∴S=S△ABC-S△BDQ-S△ACQ=24--(3m+6)=-m2+m+=-(m-2)2+6,
∴当m=2时,S最大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.
(1)求该抛物线的解析式及点M的坐标;
(2)连接ON,AC,证明:∠NOB=∠ACB;
(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;
(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.

(1)如图1,若m=
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线与x轴交点为A、B(点B在点A的右侧),与y轴交于点C.
(1)试用含m的代数式表示A、B两点的坐标;
(2)当点B在原点的右侧,点C在原点的下方时,若是等腰三角形,求抛物线的解析式;
(3)已知一次函数,点P(n,0)是x轴上一个动点,在(2)的条件下,过点P作垂直于x轴的直线交这个一次函数的图象于点M,交抛物线于点N,若只有当时,点M位于点N的下方,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是                

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为 ,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(O,2),直线AB交轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.
(1)当时,求S的值.
(2)求S关于的函数解析式.
(3)①若S=时,求的值;
②当m>2时,设,猜想k与m的数量关系并证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=-2(x-3)2-5的开口方向是______,对称轴是______,顶点坐标______.

查看答案和解析>>

同步练习册答案