17£®ÏÈÔĶÁÀí½âÏÂÃæµÄÀýÌ⣬ÔÙ°´ÒªÇó½â´ðÏÂÁÐÎÊÌ⣺
ÀýÌ⣺½âÒ»Ôª¶þ´Î²»µÈʽ£¨x+2£©£¨x-2£©£¾0
½â£º¡ß£¨x+2£©£¨x-2£©£¾0
ÓÉÓÐÀíÊýµÄ³Ë·¨·¨Ôò¡°Á½ÊýÏà³Ë£¬Í¬ºÅµÃÕý¡±£¬µÃ
$¢Ù\left\{\begin{array}{l}{x+2£¾0}\\{x-2£¾0}\end{array}\right.$  $¢Ú\left\{\begin{array}{l}{x+2£¼0}\\{x-2£¼0}\end{array}\right.$
½â²»µÈʽ×é¢Ù£¬µÃx£¾2£¬
½â²»µÈʽ×é¢Ú£¬µÃx£¼-2£¬
¡à£¨x+2£©£¨x-2£©£¾0µÄ½â¼¯Îªx£¾2»òx£¼-2£¬
¼´Ò»Ôª¶þ´Î²»µÈʽx2-4£¾0µÄ½â¼¯Îªx£¾2»òx£¼-2£®
£¨1£©Ò»Ôª¶þ´Î²»µÈʽx2-16£¾0µÄ½â¼¯Îªx£¾4»òx£¼-4£»
£¨2£©·Öʽ²»µÈʽ$\frac{x-1}{x-3}£¾0$µÄ½â¼¯Îªx£¾3»òx£¼1£»
£¨3£©½âÒ»Ôª¶þ´Î²»µÈʽx£¨2x-3£©£¼0£®

·ÖÎö £¨1£©¸ù¾Ý½âÌâ¹ý³ÌËù¸ø½â´ð²½Ö裬¿ÉÇó½â£»
£¨2£©½«²»µÈʽ$\frac{x-1}{x-3}£¾0$»¯Îª£¨x-1£©£¨x-3£©£¾0£¬¼Ì¶ø¿ÉµÃ½â£»
£¨3£©¸ù¾Ý½âÌâ¹ý³ÌËù¸ø½â´ð²½Ö裬¿ÉÇó½â£®

½â´ð ½â£º£¨1£©¡ßx2-16=£¨x+4£©£¨x-4£©£¬
¡àx2-16£¾0¿É»¯Îª£¨x-4£©£¨x-4£©£¾0£¬
ÓÉÓÐÀíÊýµÄ³Ë·¨·¨Ôò¡°Á½ÊýÏà³Ë£¬Í¬ºÅµÃÕý¡±£¬µÃ£º¢Ù$\left\{\begin{array}{l}{x+4£¾0}\\{x-4£¾0}\end{array}\right.$£¬¢Ú$\left\{\begin{array}{l}{x+4£¼0}\\{x-4£¼0}\end{array}\right.$£¬
½â²»µÈʽ×é¢Ù£¬µÃx£¾4£»
½â²»µÈʽ×é¢Ú£¬µÃx£¼-4£¬
¡àÒ»Ôª¶þ´Î²»µÈʽx2-16£¾0µÄ½â¼¯Îªx£¾4»òx£¼-4£»
¹Ê´ð°¸Îª£ºx£¾4»òx£¼-4£»
£¨2£©Ô­²»µÈʽ¿É»¯Îª£º£¨x-1£©£¨x-3£©£¾0£¬
ÓÉÓÐÀíÊýµÄ³Ë·¨·¨Ôò¡°Á½ÊýÏà³Ë£¬Í¬ºÅµÃÕý¡±£¬µÃ£º¢Ù$\left\{\begin{array}{l}{x-1£¾0}\\{x-3£¾0}\end{array}\right.$£¬¢Ú$\left\{\begin{array}{l}{x-1£¼0}\\{x-3£¼0}\end{array}\right.$£¬
½â²»µÈʽ×é¢Ù£¬µÃx£¾3£»½â²»µÈʽ×é¢Ú£¬µÃx£¼1£¬
¡à£¨x+1£©£¨x+3£©£¾0µÄ½â¼¯Îªx£¾3»òx£¼1£»
¹Ê´ð°¸Îª£ºx£¾3»òx£¼1£»
£¨3£©x£¨2x-3£©£¼0£®
ÓÉÓÐÀíÊýµÄ³Ë·¨·¨Ôò¡°Á½ÊýÏà³Ë£¬ÒìºÅµÃ¸º¡±£¬µÃ£º¢Ù$\left\{\begin{array}{l}{x£¾0}\\{2x-3£¼0}\end{array}\right.$£¬¢Ú$\left\{\begin{array}{l}{x£¼0}\\{2x-3£¾0}\end{array}\right.$£¬
½â²»µÈʽ×é¢Ù£¬µÃ0£¼x£¾1.5£¬
½â²»µÈʽ×é¢Ú£¬Î޽⣬
¡à²»µÈʽx£¨2x-3£©£¼0µÄ½â¼¯Îª0£¼x£¼1.5£®

µãÆÀ ±¾Ì⿼²éÁËÒ»ÔªÒ»´Î²»µÈʽ×éµÄÓ¦Ó㬽â´ð±¾ÌâµÄ¹Ø¼üÊÇ×ÐϸÔĶÁ²ÄÁÏ£¬Àí½â½âÌâ¹ý³Ì£¬ÄѶÈÒ»°ã£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÔÚƽÐÐËıßÐÎABCDÖУ¬¡ÏA=36¡ã£¬Ôò¡ÏCΪ£¨¡¡¡¡£©
A£®18¡ãB£®36¡ãC£®72¡ãD£®144¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÓÃÒòʽ·Ö½â·¨½âÏÂÁз½³Ì£º
£¨1£©7x2=21x£»
£¨2£©3x£¨x-4£©=5£¨x-4£©£»
£¨3£©£¨2x-1£©2-36=0£»
£¨4£©£¨3x-1£©2=4£¨2x+3£©2£»
£¨5£©x2-7x+10=0£»
£¨6£©£¨x-3£©£¨x+2£©=6£»
£¨7£©£¨x-5£©2-17£¨x-5£©+30=0£»
£¨8£©2x2+3=7x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®½âÏÂÁз½³Ì×飺
£¨1£©$\left\{\begin{array}{l}{3x-2y=-4}\\{2x+3y=19}\end{array}\right.$                 
£¨2£©$\left\{\begin{array}{l}{a+b+c=10}\\{3a+b=18}\\{a-b-c=0}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®·½³Ì$\sqrt{{x}^{2}-x+2-2\sqrt{{x}^{2}-2x+1}}$=3µÄËùÓÐʵÊýµÄºÍΪ$\frac{2+\sqrt{29}-\sqrt{37}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®½â·½³Ì×é$\left\{\begin{array}{l}{{x}^{2}+xy=12£¨1£©}\\{xy+{y}^{2}=4£¨2£©}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªABÊÇ¡ÑOµÄÖ±¾¶£¬µãCÔÚ¡ÑOÉÏ£¬µãDÔڰ뾶OAÉÏ£¨²»ÓëµãO£¬AÖغϣ©£®
£¨1£©Èçͼ1£¬Èô¡ÏCOA=60¡ã£¬¡ÏCDO=70¡ã£¬Çó¡ÏACDµÄ¶ÈÊý£®
£¨2£©Èçͼ2£¬µãEÔÚÏ߶ÎODÉÏ£¨²»ÓëO£¬DÖغϣ©£¬CD¡¢CEµÄÑÓ³¤Ï߷ֱ𽻡ÑOÓÚµãF¡¢G£¬Á¬½ÓBF£¬BG£¬µãPÊÇCOµÄÑÓ³¤ÏßÓëBFµÄ½»µã£¬ÈôCD=1£¬BG=2£¬¡ÏOCD=¡ÏOBG£¬¡ÏCFP=¡ÏCPF£¬ÇóCGµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¹Û²ìÏÂÁз½³Ì£¬ÏÈÈ·¶¨ÓÃÖ±½Ó¿ªÆ½·½·¨¡¢¹«Ê½·¨¡¢Òòʽ·Ö½â·¨ÖеÄʲô·½·¨½â·½³Ì
£¨1£©£¨x-1£©2=6£»
£¨2£©x2+x=30£»
£¨3£©2x2-6x+1=0£»
£¨4£©x2-3x=28£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®·½³Ì2-3£¨x+1£©=0µÄ½âÓë¹ØÓÚxµÄ·½³Ì$\frac{m+x}{2}$-3m-2=2xµÄ½â»¥Îªµ¹Êý£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸