精英家教网 > 初中数学 > 题目详情
如图,已知梯形ABCD,AD∥BC,BC=2AD,如果那么=  (用表示).
∵梯形ABCD,AD∥BC,BC=2AD,,∴
又∵,∴
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1) 填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连结PN、SM相交于点O,则∠POM=_____度 .

(2) 如图2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60°. 以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形。

(1)判断与推理:
① 邻边长分别为2和3的平行四边形是__________阶准菱形;
② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点上)使点落在边上的点,得到四边形,请证明四边形是菱形。
(2)操作、探究与计算:
① 已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;
② 已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,G是对角线AC上一点,GE⊥AB,GF⊥BC,垂足分别是E、F,连结EF、BG、DG。求证:DG=EF

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E, 延长BC到点F,使FC
=EC,连结DF交BE的延长线于点H,连结OH交DC于点G,连结HC.则以下四个结论中正确结论
的个数为(    ) 
①OH=BF; ②∠CHF=45°; ③GH=BC;④DH2=HE·HB
A. 1个        B. 2个        C. 3个         D. 4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为【   】
    
A.53°B.37°C.47°D.123°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=4,AB=1,F为AD的中点,则F到BC的距离是(   ).
A.1  B.2C.4   D.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,

问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?
问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.
问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.
问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

三个正方形的位置如图所示,点在线段上,正方形的边长为4,则△的面积为  (   )
A.14B.16C.18D.20

查看答案和解析>>

同步练习册答案