精英家教网 > 初中数学 > 题目详情
如图,点P是等腰△ABC的底边BC上的点,以AP为腰在AP的两侧分别作等腰△AFP和等腰△AEP,且∠APF=∠APE=∠B,PF交AB于点M,PE交AC于点N,连接MN.
求证:MNBC.
证明:∵△ABC、△AFP和△AEP是等腰三角形,
∴AF=AP,∠F=∠APN,∠FAM=∠PAN,
在△AFM和△APN中,
∠F=∠APN
AF=AP
∠FAM=∠PAN

∴△AFM≌△APN(ASA),
∴AM=AN.
∴∠AMN=∠B,
∴MNBC.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:D、E为BC边上的点,AD=AE,BD=EC.求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AB=AC,BD是∠ABC的平分线,若∠ADB=93°,则∠A=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AD为△ABC的高,∠B=2∠C,BD=5,BC=20.求AB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

探究问题:
(1)阅读理解:
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;

(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的
BC
上任意一点.求证:PB+PC=PA;
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在
BC
上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段______的长度即为△ABC的费马距离.

(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图所示,等边三角形ABC的边长为2,点P和Q分别从A和C两点同时出发,做匀速运动,且它们的速度相同.点P沿射线AB运动,点Q沿边BC的延长线运动,设PQ与直线AC相交于点D,作PE⊥AC于E,当P和Q运动时,线段DE的长是否改变?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

边长为4的正三角形的高为(  )
A.2B.4C.
3
D.2
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等边三角形ABC的边长是4
3
,三角形内有一点O,且OA=OB=OC,则OA=______.

查看答案和解析>>

同步练习册答案