精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.

(1)求a,b的值;
(2)连结OM,求∠AOM的大小.

【答案】
(1)解:如图,过点A作AE⊥y轴于点E,

∵AO=OB=2,∠AOB=120°,

∴∠AOE=30°,

∴AE=1,EO=

∴A点坐标为:(﹣1, ),B点坐标为:(2,0),

将两点代入y=ax2+bx得:

解得:

∴a= ,b=﹣


(2)解:由(1)可知:抛物线的表达式为:y= x2 x;

过点M作MF⊥OB于点F,

∵y= x2 x= (x2﹣2x)= (x﹣1)2

∴M点坐标为:(1,﹣ ),

∴tan∠FOM= =

∴∠FOM=30°,

∴∠AOM=30°+120°=150°


【解析】(1)如图,过点A作AE⊥y轴于点E,根据含30°的直角三角形的边之间的关系得出AE,OE的长,进而得出A,B两点的坐标,然后利用待定系数法就可以求出a,b的值;
(2)过点M作MF⊥OB于点F,根据抛物线求出其顶点M的坐标,从而得出OF,MF的长度,根据tan∠FOM的值就可以求出∠FOM的值,进而得出答案。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,点 D,E 分别在边 AC,AB 上,BD CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.

(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)

(2)请选择(1)中的一种情形,写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC= +1,∠D=60°,则两条斜边的交点E到直角边BC的距离是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,△ACB和△DCE均为等边三角形,点ADE在同一直线上,连接BE.填空:

AEB的度数为______

线段ADBE之间的数量关系为______

(2)拓展探究

如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE90°,点ADE在同一直线上,CM为△DCEDE边上的高,连接BE,请判断∠AEB的度数及线段CMAEBE之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,ABC是等边三角形,P是三角形内一点,PDABPEBCPFAC,若ABC的周长为18,则PD+PE+PF=(  )

A. 18B. 9

C. 6D. 条件不够,不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,BAC=90°AC=2AB,点DAC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与AD重合,连接BEEC

试猜想线段BEEC的数量及位置关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=

(1)求抛物线的解析式;
(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;
(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是(
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B,A,D,E在同一直线上,BD =AE, BC∥EF, 要使△ABC≌△DEF则需要添加一个适当的条件是______

查看答案和解析>>

同步练习册答案