精英家教网 > 初中数学 > 题目详情

【题目】如图,地物线点均不为0)的顶点为,与轴的交点为,我们称以为顶点,对称轴是轴且过点的抛物线为抛物线的衍生抛物线,直线为抛物线的衍生直线.

1)求抛物线的衍生抛物线和衍生直线的解析式;

2)若一条抛物线的衍生抛物线和衍生直线分别是,求这条抛物线的解析式.

【答案】(1) (2)

【解析】

1)衍生抛物线顶点为原抛物线与y轴的交点,则可根据顶点设顶点式方程,由衍生抛物线过原抛物线的顶点代入顶点坐标可求出衍生抛物线解析式.根据衍生直线经过MN可求衍生直线的解析式.

2)已知衍生抛物线和衍生直线求原抛物线思路正好与(1)相反,根据衍生抛物线与衍生直线的两交点分别为衍生抛物线与原抛物线的交点,则可推得原抛物线顶点式,再代入经过点,即得解析式.

解:(1)∵抛物线点过

∴设其衍生抛物线为

∴衍生抛物线过抛物线的顶点

,即

∴衍生抛物线为

设衍生直线为,则直线点过

解得

∴衍生直线为

2)∵衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点,

∴将联立,得

解得

∵衍生抛物线的顶点为

∴原抛物线的顶点为

设原抛物线为,则抛物线过点

,即

∴原抛物线为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点CD在⊙O上,点E在⊙O外,∠EAC=∠D60°.

(1)求证:AE是⊙O的切线;

(2) 连接OC,BC3时,求劣弧AC的长和扇形B0C的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知的半径为的两条弦,,则弦之间的距离是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形中,AB=8BC=6,过对角线中点的直线分别交边于点.

(1)求证:四边形是平行四边形;

(2)当四边形是菱形时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数.

1)用配方法求出该函数图象的顶点坐标和对称轴;

2)在如图所示的平面直角坐标系中画出该函数的大致图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线经过点和点

(1)求抛物线的解析式及顶点的坐标;

(2)是抛物线上之间的一点,过点轴于点轴,交抛物线于点,过点轴于点,当矩形的周长最大时,求点的横坐标;

(3)如图2,连接,点在线段(不与重合),作交线段于点,是否存在这样点,使得为等腰三角形?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若,且AB10,则CB的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为5的扇形AOB中,AOB=90°,点C是弧AB上的一个动点(不与点AB重合)ODBCOEAC,垂足分别为DE

1)当BC=6时,求线段OD的长;

2)在DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学课上,张老师出示了一个题目:如图,ABCD的对角线相交于点O,过点OEF垂直于BDAB,CD分别于点F,E,连接DF,请根据上述条件,写出一个正确结论其中四位同学写出的结论如下:

小青:;小何:四边形DFBE是正方形;

小夏:;小雨:

这四位同学写出的结论中不正确的是  

A. 小青 B. 小何 C. 小夏 D. 小雨

查看答案和解析>>

同步练习册答案