【题目】如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2 , C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.
(1)求抛物线C1的解析式及顶点坐标;
(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;
(3)若抛物线C2的对称轴存在点P,使△PAC为等边三角形,求m的值.
【答案】
(1)
解:∵抛物线C1经过原点,与X轴的另一个交点为(2,0),
∴ ,解得 ,
∴抛物线C1的解析式为y=x2﹣2x,
∴抛物线C1的顶点坐标(1,﹣1)
(2)
解:如图1,
∵抛物线C1向右平移m(m>0)个单位得到抛物线C2,
∴C2的解析式为y=(x﹣m﹣1)2﹣1,
∴A(m,0),B(m+2,0),C(0,m2+2m),
过点C作CH⊥对称轴DE,垂足为H,
∵△ACD为等腰直角三角形,
∴AD=CD,∠ADC=90°,
∴∠CDH+∠ADE=90°
∴∠HCD=∠ADE,
∵∠DEA=90°,
∴△CHD≌△DEA,
∴AE=HD=1,CH=DE=m+1,
∴EH=HD+DE=1+m+1=m+2,
由OC=EH得m2+2m=m+2,解得m1=1,m2=﹣2(舍去),
∴抛物线C2的解析式为:y=(x﹣2)2﹣1
(3)
解:如图2,连接BC,BP,
由抛物线对称性可知AP=BP,
∵△PAC为等边三角形,
∴AP=BP=CP,∠APC=60°,
∴C,A,B三点在以点P为圆心,PA为半径的圆上,
∴∠CBO= ∠CPA=30°,
∴BC=2OC,
∴由勾股定理得OB= = OC,
∴ (m2+2m)=m+2,
解得m1= ,m2=﹣2(舍去),
∴m=
【解析】(1)把(0,0)及(2,0)代入y=x2+bx+c,求出抛物线C1的解析式,即可求出抛物线C1的顶点坐标,(2)先求出C2的解析式,确定A,B,C的坐标,过点C作CH⊥对称轴DE,垂足为H,利用△PAC为等腰直角三角形,求出角的关系可证得△CHD≌△DEA,再由OC=EH列出方程求解得出m的值,即可得出C2的解析式.(3)连接BC,BP,由抛物线对称性可知AP=BP,由△PAC为等边三角形,可得AP=BP=CP,∠APC=60°,由C,A,B三点在以点P为圆心,PA为半径的圆上,可得BC=2OC,
利用勾股定理求出OB= OC,列出方程求出m的值即可.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M,N分别以每秒1个单位的速度从点A,D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M,N同时停止运动.设运动时间为t秒.
(1)求菱形ABCD的周长.
(2)设△DMN的面积为S,求S关于t的解析式,并求S的最大值(提示:需分两种情况讨论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图的等边三角形ABC是学校的一块空地,为美化校园,决定把这块空地分为全等的三部分,分别种植不同的花草.现有两种划分方案:(1)分为三个全等的三角形;(2)分为三个全等的四边形.你认为这两种方案能实现吗?若能,画图说明你的划分方法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图像与反比例函数y= (x>0)的图像交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.
(1)求一次函数、反比例函数的解析式;
(2)反比例函数图像上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】林城市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了名学生;
(2)请将条形统计图补充完整;
(3)如果全市有16万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读,后解答: = = =3+
像上述解题过程中, ﹣ 与 + 相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,
(1) 的有理化因式是; +2的有理化因式是
(2)将下列式子进行分母有理化: =; = .
(3)已知a= ,b=2﹣ ,比较a与b的大小关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了参观上海世博会,某公司安排甲、乙两车分别从相距300千米的上海、泰州两地同时出发相向而行,甲到泰州带客后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图像.
(1)请直接写出甲离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量x的取值范围;
(2)当它们行驶4.5小时后离各自出发点的距离相等,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,甲、乙两车从各自出发地驶出后经过多少时间相遇?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com