精英家教网 > 初中数学 > 题目详情
12.如图,AB⊥CD,CD⊥BD,∠A=∠FEC,以下是小明同学证明EF∥CD的过程,请你在横线上补充完整其说理过程或理由.
证明:∵AB⊥CD,CD⊥BD(已知)
∴∠ABD=∠CDB=90°(垂直定义)
∴∠ABD+∠CDB=180°.
∴AB∥(CD)(同旁内角互补,两直线平行)
∵∠A=∠FEC(已知)
∴AB∥(EF)(同位角相等,两直线平行)
∴(CD)∥(EF)(平行于同一条直线的两条直线平行)

分析 由AB垂直于BD,CD垂直于BD,得到一对直角相等,进而确定出一对同旁内角互补,利用同旁内角互补两直线平行得到AB与CD平行,再由已知同位角相等得到AB与EF平行,利用平行于同一条直线的两直线平行即可得证.

解答 证明:∵AB⊥BD,CD⊥BD(已知),
∴∠ABD=∠CDB=90°(垂直定义),
∴∠ABD+∠CDB=180°.
∴AB∥CD(同旁内角互补,两直线平行),
∵∠A=∠FEC(已知),
∴AB∥EF(同位角相等,两直线平行),
∴CD∥EF(平行于同一条直线的两条直线平行).

点评 此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.如图,是正六边形硬纸片ABCDEF在桌面上的起始位置,它的边长为2cm,若它沿直线l不滑行地翻滚一周,则正六边形的中心O运动的路程为4πcm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知点A,E,B在一同条直线上,设∠CED=x,∠AEC+∠D=y.
(1)若AB∥CD,试用含x的式子表示y;
(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若x2-2x-2=(x2-1)0,则x的值是3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知二次函数y=-x2+2x
(1)若x≥2,求函数y的最大值;
(2)若x≥0,求函数y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.补全解题过程.
如图,∵AD∥BC
∴∠FAD=∠FBC(两直线平行,同位角相等)
∵∠1=∠2
∴AB∥CD(内错角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若a是绝对值最小的数,b是有理数,则a+b=b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.若a-a-1=1,求下列各式的值:
(1)a2+a-2
(2)a3-a-3
(3)a+a-1
(4)a3+a-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.比较两代数式的大小:2(a2+b2)与(a+b)2

查看答案和解析>>

同步练习册答案