精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.

(1)求证:AC与⊙O相切.
(2)若BC=6,AB=12,求⊙O的面积.
(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可。
(2)16π

分析:(1)连接OE,求出∠ODE=∠F=∠DEO,推出OE∥BC,得出OE⊥AC,根据切线的判定推出即可。
(2)证△AEO∽△ACB,得出关于半径r的方程,求出r即可。
解:(1)证明:连接OE,

∵OD=OE,∴∠ODE=∠OED。
∵BD=BF,∴∠ODE=∠F。
∴∠OED=∠F。∴OE∥BF。
∴∠AEO=∠ACB=90°。
∵OE是⊙O的半径,∴AC与⊙O相切。
(2)由(1)知∠AEO=∠ACB,又∠A=∠A,
∴△AOE∽△ABC。

设⊙O的半径为r,则,解得:r=4。
∴⊙O的面积π×42=16π。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是
A.60°B.90°C.120°D.180°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,在⊙O中,,∠A=30°,则∠B=
A.150°B.75°C.60°D.15°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB于点E,以O为圆心,OD为半径作⊙O.

(1)求证:⊙O与CB相切于点E;
(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求△BHE的面积和tan∠BHE的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.

(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;
(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;
(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.

(1)若∠C=30°,求证:BE是△DEC外接圆的切线;
(2)若BE=,BD=1,求△DEC外接圆的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

AB是⊙O的一条弦,它的中点为M,过点M作一条非直径的弦CD,过点C和D作⊙O的两条切线,分别与直线AB相交于P、Q两点.求证:PA=QB

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为,则这个圆锥的侧面积是
A.4πB.3πC.D.2π

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以线段为直径的⊙交线段于点,点是弧AE的中点,于点°,

(1)求的度数;
(2)求证:BC是⊙的切线;
(3)求MD的长度.

查看答案和解析>>

同步练习册答案