【题目】如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.
【答案】(1);(2);(3)y=(0<x<).
【解析】
试题分析:(1)根据OD⊥BC可得出BD=BC=,在Rt△BOD中利用勾股定理即可求出OD的长;
(2)连接AB,由△AOB是等腰直角三角形可得出AB的长,再根据D和E是中点可得出DE=;
(3)由BD=x,可知OD=,由于∠1=∠2,∠3=∠4,所以∠2+∠3=45°,过D作DF⊥OE,DF=,EF=x即可得出结论.
试题解析:(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;
(2)如图(2),存在,DE是不变的.
连接AB,则AB==2,
∵D和E分别是线段BC和AC的中点,
∴DE=AB=;
(3)如图(3),连接OC,
∵BD=x,
∴OD=,
∵∠1=∠2,∠3=∠4,
∴∠2+∠3=45°,
过D作DF⊥OE.
∴DF==,由(2)已知DE=,
∴在Rt△DEF中,EF==,
∴OE=OF+EF=+=
∴y=DFOE=
=(0<x<).
科目:初中数学 来源: 题型:
【题目】如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同学在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC宽30m,求高压电线杆CD的高度(结果保留三个有效数字,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市出租车的收费标准为:起步价7.5元,超过3千米后每千米1.2元,则某人乘坐出租车行驶了x(x > 3)千米应付车费_____________元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于任何实数,我们规定符号 =ad﹣bc,例如: =1×4﹣2×3=﹣2
(1)按照这个规律请你计算 的值;
(2)按照这个规定请你计算,当a2﹣3a+1=0时,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.
(1)要使每天获得利润700元,请你帮忙确定售价;
(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com