精英家教网 > 初中数学 > 题目详情
精英家教网如图,点C、D在线段AB的同侧,已知∠CAB=∠DBA,AC=BD.请你从图中找出一对相等的线段并证明.
分析:要使BC=AD,可以通过SAS证明△ACB≌△BDA,从而得到结论.
解答:解:证明BC=AD.
在△ACB与△BDA中
AC=BD
∠CAB=∠DBA
AB=BA

∴△ACB≌△BDA,
∴BC=AD.
点评:本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图,点C、D在线段AB上,△PCD是等边三角形.
(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;
(2)当△ACP∽△PDB时,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是
∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO
(只要写一个条件).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是
∠B=∠C(答案不唯一)
∠B=∠C(答案不唯一)
(只写一个条件即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C,D在线段AB上,AC=
1
3
AB,CD=
1
2
CB,若AB=3,则图中所有线段长的和是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C、D在线段AB上,AC=
13
BC
,D是BC的中点,CD=4.5,求线段AB的长.

查看答案和解析>>

同步练习册答案