精英家教网 > 初中数学 > 题目详情

【题目】现定义一种新运算:“※”,使得a※b=4ab

(1)求4※7的值;

(2)求x※x+2※x﹣2※4=0x的值;

(3)不论x是什么数,总有a※x=x,求a的值.

【答案】(1)112(2)x1=2x2=43a=

【解析】试题分析:

(1)按照“新运算:”的运算规则,把题目中的“新运算”转化为普通运算,再按有理数的相关运算法则计算即可;

(2)先按题目中“新运算”的规则把所涉及的“新运算”转化普通运算,就可将涉及“新运算”的方程转化为“一元二次方程”,然后再解方程即可;

(3)先按题目中“新运算”的规则把所涉及的“新运算”转化为普通运算,得到普通的含有“字母”系数的方程,再根据题意解答即可.

试题解析

14※7=4×4×7=112

2)由新运算的定义可转化为:4x2+8x﹣32=0

解得x1=2x2=﹣4

3由新运算的定义得4ax=x

4a﹣1x=0

不论x取和值,等式恒成立,

∴4a﹣1=0

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.

试验种子n(粒)

1

5

50

100

200

500

1000

2000

3000

发芽频数m

1

4

45

92

188

476

951

1900

2850

发芽频率

0

0.80

0.90

0.92

0.94

0.952

0.951

a

b

(1)计算表中a,b的值;

(2)估计该麦种的发芽概率;

(3)如果该麦种发芽后,只有87%的麦芽可以成活,现有100kg麦种,则有多少千克的麦种可以成活为秧苗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在《九章算术》中有求三角形面积公式底乘高的一半,但是在实际丈量土地面积时,量出高并非易事,所以古人想到了能否利用三角形的三条边长来求面积.我国南宋著名的数学家秦九韶(年)提出了三斜求积术,阐述了利用三角形三边长求三角形面积方法,简称秦九韶公式.在海伦(公元年左右,生平不详)的著作《测地术》中也记录了利用三角形三边长求三角形面积的方法,相传这个公式最早是由古希腊数学家阿基米德(公元前公元前年)得出的,故我国称这个公式为海伦一秦九韶公式.它的表达为:三角形三边长分别为,则三角形的面积(公式里的为半周长即周长的一半).

请利用海伦一秦九韶公式解决以下问题:

)三边长分别为的三角形面积为__________.

)四边形中,,四边形的面积为__________.

)五边形中,,五边形的面积为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。

请根据图中信息,解答下列问题:

(1)求2016年第一产业生产总值(精确到1亿元);

(2)2016年比2015年的国民生产总值增加了百分之几(精确到1%)?

(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值平均年增长率(精确到1%)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形中,

)求的面积.

)若中点,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列试验中,概率最大的是(  )

A. 抛掷一枚质地均匀的硬币出现正面的概率

B. 抛掷一枚质地均匀的正方体骰子(六个面分别刻有数字16),掷出的点数为奇数的概率

C. 在一副洗匀的扑克(背面朝上)中任取一张恰好为方块的概率

D. 三张同样的纸片分别写有数字2、3、4,洗匀后背面向上任取一张恰好为偶数的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线ABy轴于A点,交x轴于B点, .

已知点,写出点D关于直线AB对称的点的坐标;

现在一直角三角板的直角顶点放置于AB的中点C,并绕C点旋转,两直角边分别交x轴、y轴于N如图两点,求证:

E是线段OB上一点, G,交ABF,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,同底数幂的乘法法则为:am·anamn(其中a≠0mn为正整数),类似地我们规定关于任意正整数mn的一种新运算:h(mn)h(m)·h(n),请根据这种新运算填空:

(1)h(1),则h(2)________

(2)h(1)k(k≠0),则h(n)·h(2017)________(用含nk的代数式表示,其中n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在真角坐标系中,矩形0ABC的顶点AC在坐标轴上,点B(4,2);过点D(0,3)和E(6,0)的直线分别与ABBC交于点MN

(1)求直线DE的函数表达式和点MN的坐标;

(2)若函数yk0,k为常数)经过点M,求该函数的表达式,并判定点N是否在该函数的图象上:

(3)求△OMN的面积S

(4)若函教yk0,k为常数)的图象与△BMN没有交点,清楚直接写出k的取值范圈,不需解答过程.

查看答案和解析>>

同步练习册答案