精英家教网 > 初中数学 > 题目详情
9.计算:
(1)($\frac{1}{2}$)-1-($\sqrt{2}$-1)0+|-3|
(2)$\frac{a{b}^{2}}{2{c}^{2}}$÷$\frac{3{a}^{2}{b}^{2}}{4cd}$•($\frac{-3}{2d}$)2

分析 根据实数运算的法则,以及分式运算的法则即可求出答案.

解答 解:(1)原式=2-1+3
=4
(2)原式=$\frac{{a{b^2}}}{{2{c^2}}}÷\frac{{3{a^2}{b^2}}}{4cd}•\frac{9}{{4{d^2}}}$
=$\frac{{a{b^2}}}{{2{c^2}}}•\frac{4cd}{{3{a^2}{b^2}}}•\frac{9}{{4{d^2}}}$
=$\frac{{a{b^2}}}{{2{c^2}}}•\frac{4cd}{{3{a^2}{b^2}}}•\frac{9}{{4{d^2}}}$
=$\frac{3}{2acd}$

点评 本题考查学生的运算能力,涉及实数混合运算,分式混合运算,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.将下列推理过程填写完整.
(1)如图1,已知∠B+∠BED+∠D=360°,求证AB∥CD.
证明:过E点作EF∥CD(过直线外一点有且只有一条直线与已知直线平行)
∵EF∥CD,
∴∠D+∠DEF=180°,(两直线平行,同旁内角互补)
∵∠B+∠BED+∠D=360°,(已知)
∴∠B+∠BEF=∠B+∠BED+∠D-(∠D+∠DEF)=360°-180°=180°
∴EF∥AB,(同旁内角互补,两直线平行)
∴AB∥CD,(平行于同一直线的两直线平行)
(2)如图2,已知∠BED=∠B+∠D,求证AB∥CD.
证明:过E点作EF∥CD(过直线外一点有且只有一条直线与已知直线平行)
∵EF∥CD,
∴∠D=∠FED,(两直线平行,内错角相等)
∵∠BED=∠B+∠D(已知)
∴∠B=∠BEF-∠D=∠BED-∠FED=∠BEF,
∴AB∥EF,(内错角相等,两直线平行)
∴AB∥CD.(平行于同一直线的两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,已知△ABC和△EFC都是等边三角形,点E在线段AB上.
(1)求证:AE=BF,BF∥AC;
(2)若点D在直线AC上,且ED=EC(如图2),求证:AB=AD+BF;
(3)在(2)的条件下,若点E改为在线段AB的延长线上,其它条件不变(如图3),请直接写出AB、AD、BF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图所示,作出△ABC关于直线l的对称三角形A'B'C'.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.观察下列方程及解的特征:
(1)x+$\frac{1}{x}$=2的解为x1=x2=1;
(2)x+$\frac{1}{x}$=$\frac{5}{2}$的解为x1=2,x2=$\frac{1}{2}$;
(3)x+$\frac{1}{x}$=$\frac{10}{3}$的解为x1=3,x2=$\frac{1}{3}$;     …
解答下列问题:
(1)请猜想:方程x+$\frac{1}{x}$=$\frac{26}{5}$的解为x1=5,x2=$\frac{1}{5}$;;
(2)请猜想:关于x的方程x+$\frac{1}{x}$═a+$\frac{1}{a}$ 的解为x1=a,x2=$\frac{1}{a}$(a≠0);
(3)下面以解方程x+$\frac{1}{x}$=$\frac{26}{5}$为例,验证(1)中猜想结论的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产记为正、减产记为负):
星期
增减+5-2-4+12-10+16-9
(1)根据记录的数据可知该厂星期六生产自行车多少辆?
(2)产量最多的一天比产量最少的一天多生产多少辆自行车?
(3)求该厂本周实际生产自行车多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.若a、b为一等腰三角形的边长,且满足$\sqrt{3a-6}$+$\sqrt{2-a}$=b-4,求此等腰三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知数轴上有A、B、C三个点,它们表示的数分别是a、b和8,O是原点,且(a+20)2+|b+10|=0.
(1)填空:a=-20,b=-10;
(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长;并探索:BC-AB的值是否随着时间t的变化而变化?请说明理由.
(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P到达C点时,点Q就停止移动,设点P移动的时间为t秒,
问:①当t为多少时,点Q追上点P;
②当t为多少时,P、Q两点相距6个单位长度?

查看答案和解析>>

同步练习册答案