精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线 与x轴相交于点A、B,与y轴相交于点C,抛物线对称轴与x轴相交于点M,

(1)求△ABC的面积;
(2)若p是x轴上方的抛物线上的一个动点,求点P到直线BC的距离的最大值;
(3)若点P在抛物线上运动(点P异于点A),当∠PCB=∠BCA时,求直线PC的解析式.

【答案】
(1)

解:令y=0,则有﹣ x2+4x﹣6=﹣ (x﹣2)(x﹣6)=0,

解得:x1=2,x2=6,

即点A(2,0),点B(6,0).

令x=0,则y=﹣6,

即点C(0,6).

∴AB=4,CO=6.

△ABC的面积SABC= ABCO= ×4×6=12


(2)

解:设直线BC的解析式为y=kx+b,

∵点B(6,0),点C(0,﹣6),

∴有 ,解得

∴直线BC的解析式为y=x﹣6.

设经过动点P且平行于直线BC的直线解析式为y1=x+a.

将y1=x+a代入抛物线y=﹣ x2+4x﹣6中得: x2﹣3x+6+a=0,

若直线y1=x+a与抛物线相切,则有:

△=(﹣3)2﹣4× ×(6+a)=0,即3+2a=0,

解得:a=﹣

﹣3x+6﹣ =0,即x2﹣6x+9=0,

解得:x=3,

将x=3代入y1=x﹣ ,得y1=

∴此时P点坐标为(3, )在x轴上方.

∵直线BC的解析式为x﹣y﹣6=0,

∴点P到直线BC的距离= =

故点P到直线BC的距离的最大值为


(3)

解:过点A作AE⊥BC与点E,并延长AE交直线CP与点D,如图所示.

∵点A(2,0),点B(6,0),点O(0,0),点C(0,﹣6),

∴AB=4,OA=2,OC=6,OB=6.

由勾股定理可知:AC= =2 ,BC= =6

∴sin∠OBC= = = ,AE=2

∵∠PCB=∠ACB,且BC⊥AD,

∴CD=CA=2 ,DE=AE=2 (等腰三角形三线合一),

∴AD=AE+DE=4

设点D坐标为(m,n),

则由两点间的距离公式可知,

,解得 (舍去)或

即此时点D的坐标为(6,﹣4).

设直线CP的解析式为y=k1x﹣6,将D点坐标代入得:

﹣4=6k1﹣6,解得:k1=

∴若点P在抛物线上运动(点P异于点A),当∠PCB=∠BCA时,直线PC的解析式为y= x﹣6.


【解析】(1)令x=0,可得点C坐标,令y=0,可得点A、B坐标,再结合三角形面积公式,即可得出结论;(2)找与直线BC平行且过动点P的直线,令此直线与抛物线相切,看切点P是否在x轴上方,如果在,则切点P到直线BC的距离就是所求最大距离,若不在,只需考虑端点A、B到直线BC的距离即可;(3)过点A作AE⊥BC与点E,并延长AE交直线CP与点D,巧妙利用等腰三角形的三线合一,找出AD、CD的长度,根据两点间的距离公式即可得出结论,不过此处要注意到会产生增根.
【考点精析】通过灵活运用二次函数的图象和二次函数的性质,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=4.

(1)求点B的坐标,并画出△ABC;

(2)求△ABC的面积;

(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,延长CB至M,使BM=2,连接AM,BN⊥AM于N,O是AC、BD的交点,连接ON,则ON的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,AB=AC,AFBC于点F,D、E分别为BF、CF的中点,则图中全等三角形共有____对.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AE=AF,AB=AC,ECBF交于点O,A=60°,B=25°,求∠EOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,DAB=ABC=90°,AB=BC,E是AB的中点,CEBD

(1)求证:BE=AD;

(2)求证:AC是线段ED的垂直平分线;

(3)DBC是等腰三角形吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图等边三角形ABC的边长为4ADBC边上的中线FAD边上的动点EAC边上一点AE2EFCF取得最小值时∠ECF的度数为( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的结论有(填上序号即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是(  )

A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF

查看答案和解析>>

同步练习册答案