精英家教网 > 初中数学 > 题目详情
17.(1)计算:-22÷0.5-(1-$\frac{1}{3}$×0.6)÷(-2)2
(2)已知B=4x2-5x-6,A-B=-7x2-10x+12,试求A+B的值.
(3)先化简,再求值:5a2b+3(1-2ab2)-2(a2b-4ab2+1),其中a=-1,b=$\frac{1}{3}$.

分析 (1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;
(2)把B代入A-B中表示出A,即可求出A+B的值;
(3)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.

解答 解:(1)原式=-2-$\frac{4}{5}$×$\frac{1}{4}$=-2$\frac{1}{5}$;
(2)∵B=4x2-5x-6,A-B=-7x2-10x+12,
∴A+B=2B+(A-B)=2(4x2-5x-6)+(-7x2-10x+12)=x2-20x;
(3)原式=5a2b+3-6ab2-2a2b+8ab2-2=3a2b+2ab2+1,
当a=-1,b=$\frac{1}{3}$时,原式=1-$\frac{2}{9}$+1=$\frac{16}{9}$.

点评 此题考查了整式的加减-化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,某小区两座楼中间有个路灯,甲、乙两个人分别在楼上观察路灯顶端,视线所及如图①所示,根据实际情况 画出平面图形如图②,CD⊥DF,AB⊥DF,EF⊥DF,甲从点C可以看到点G处,乙从点E恰巧可以看到点D处,点B是DF的中点,路灯AB高8米,DF=102米,tan∠AGB=$\frac{1}{3}$,求甲、乙两人的观测点到地面的距离的差.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,二次函数y=ax2+bx-3的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)D是线段BC上的一个动点,过D点作y轴的平行线交抛物线于点N,求线段DN长度的最大值;
(3)该抛物线的顶点为M,探究坐标轴上是否存在点P,使得以点P,A,C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知直线AB和CD相交于点O,射线OE⊥AB于点O,射线OF⊥CD于点O,且∠BOF=50°,求∠AOC和∠EOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2$\sqrt{3}$)米.
(1)求背水坡AD的坡度;
(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知∠AOC=75°,∠BOC=50°,OD平分∠BOC,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系XOY中,A(-3,2),B(-4,-3),C(-1,-1)
(1)画出△ABC关于y轴的对称图形;
(2)写出△ABC关于x轴对称的△A′B′C′的各点坐标:A′(-3,-2),B′(-4,3),C′(-1,1)
(3)计算△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)用配方法解一元二次方程:x2-6x+4=0.
(2)已知关于x的一元二次方程x2-4x+m=0的根的判别式的值为4,求m值及方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)计算:2-1+|$\sqrt{3}$-2|+tan60°        
(2)解方程:(x+1)(x-3)=-1.

查看答案和解析>>

同步练习册答案