精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,ABDCAB=AD,对角线ACBD交于点OAC平分∠BAD,过点CCEABAB的延长线于点E.连接OE

1)求证:四边形ABCD是菱形;

2)若AB=OE=2,求线段CE的长.

【答案】1)证明见解析;(2

【解析】

1)先根据题意得出∠OAB=DCA,然后进一步证明出∠DCA=DAC,得出CD=AD=AB,然后接着进一步证明即可;

(2)先根据题意得出OE=OA=OC=2,再进一步得出OB=1,通过证明△AOB∽△AEC然后利用相似三角形性质进一步求解即可.

1)证明:∵ABCD

∴∠OAB=DCA

AC为∠DAB的平分线,

∴∠OAB=DAC

∴∠DCA=DAC

CD=AD=AB

ABCD

∴四边形ABCD是平行四边形,

AD=AB

∴平行四边形ABCD是菱形;

2)∵四边形ABCD是菱形,

OA=OCBDAC

CEAB

OE=OA=OC=2

OB==1AC=OA+OC=4

∵∠AOB=AEC=90°,∠OAB=EAC

∴△AOB∽△AEC

=

CE=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.

1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;

2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,抛物线轴交于点,与轴交于点,抛物线的顶点轴的距离为

1)如图1,求抛物线的解析式;

2)如图2,点为第三象限内的抛物线上一点,连接轴于点,过点轴于点,连接并延长交于点,求证:

3)如图3,在(2)的条件下,点为第二象限内的抛物线上的一点,分别连接,点的中点,点为第二象限内的一点,分别连接,且,若,求点的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种高档蔬菜莼菜,其进价为16/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(/kg)的一次函数,其售价、日销售量对应值如表:

售价(/)

20

30

40

日销售量()

80

60

40

(1)关于的函数解析式(不要求写出自变量的取值范围)

(2)为多少时,当天的销售利润 ()最大?最大利润为多少?

(3)由于产量日渐减少,该商品进价提高了/,物价部门规定该商品售价不得超过36/,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在以线段AB为直径的⊙O上取一点,连接AC、BC.ABC沿AB翻折后得到ABD.

(1)试说明点D在⊙O上;

(2)在线段AD的延长线上取一点E,使AB2=AC·AE.求证:BE为⊙O的切线;

(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ABC45°CDABDBE平分∠ABC,且BEACE,与CD相交于点FDHBCHBEG.下列结论:①BDCD;②AD+CFBD;③CEBF;④AEBG.其中正确的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图1,抛物线yax2+bx3x轴交于A(﹣20),B40)两点,与y轴交于点C

1)求抛物线的表达式;

2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;

3)如图2,当POB的中点时,过点PPDx轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0m2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求Sm的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:

如图(a,AB在直线l的同侧,要在直线l上找一点C,使ACBC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

1)实践运用:

如图(b),已知,⊙O的直径CD4,点A ⊙O 上,∠ACD=30°B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为

2)知识拓展:

如图(c),在Rt△ABC中,AB=10∠BAC=45°∠BAC的平分线交BC于点DEF分别是线段ADAB上的动点,求BE+EF的最小值,并写出解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,正方形的边长为2,将正方形绕点旋转一周,连接

1)猜想:的值是__________,直线与直线相交所成的锐角度数是__________

2)探究:直线垂直时,求线段的长;

3)拓展:取的中点,连接,直接写出线段长的取值范围.

查看答案和解析>>

同步练习册答案