精英家教网 > 初中数学 > 题目详情
11.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是(  )
A.正方形B.矩形C.菱形D.直角梯形

分析 根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.

解答 已知:AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.
求证:四边形EFGH是矩形
证明:∵E、F、G、H分别为各边的中点,
∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)
∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)
∵AC⊥BD,EF∥AC,EH∥BD,
∴∠EMO=∠ENO=90°,
∴四边形EMON是矩形(有三个角是直角的四边形是矩形),
∴∠MEN=90°,
∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).
故选B.

点评 本题考查的是矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.计算:
(1)$\sqrt{64}$+$\frac{\root{3}{-27}}{2}$-$\sqrt{(-7)^{2}}$
(2)解方程$\left\{\begin{array}{l}{x-2y=5}\\{3x+y=1}\end{array}\right.$
(3)解方程$\left\{\begin{array}{l}{4b+a=15}\\{3a-4b=-3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,矩形ABCD中,AB=8,BC=3,顶点A,B分别在y轴和x轴上,当点A在y轴上移动时,点B也随之在x轴上移动,在移动过程中,OD的最大值为(  )
A.8B.$\sqrt{73}$C.$\sqrt{85}$D.9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.当x取什么值时,代数式$\frac{2x+3}{2}$的值与1-$\frac{x-1}{3}$的值相等?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程:4x+1=2(3-x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:如图,Rt△ABC中,∠C=90°,AC=$\sqrt{10}+\sqrt{2}$,BC=$\sqrt{10}-\sqrt{2}$,求
(1)Rt△ABC的面积.
(2)斜边AB的长.
(3)求AB边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,△ABC在直角坐标系中,
(1)写出△ABC各点的坐标.A(-1,-1)B(4,2)C(1,3).
(2)若把△ABC向上平移1个单位,再向右平移3个单位得△A′B′C′,在图中画出△A′B′C′,并写出A′、B′、C′的坐标.A′(2,0)B′(7,3)C′(4,4).
(3)连结CA′,CB′,则△CA′B′的面积是5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知等腰△ABC,建立适当的直角坐标系后,其三个顶点的坐标分别为A(m,0).B(m+4,2),C(m+4,-3),则下列关于该三角形三边关系正确的是(  )
A.AC=BC≠ABB.AB=AC≠BCC.AB=BC≠ACD.AB=AC=BC

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
如:(2+i)+(3-4i)=(2+3)+(1-4)i=5-3i,
(5+i)(3-4i)=5×3+5×(-4i)+i×3+i×(-4i)=15-20i+3i-4i2=19-17i
请根据以上内容的理解,利用以前学习的有关知识将(1+2i)(1-3i)化简结果为7-i.

查看答案和解析>>

同步练习册答案