精英家教网 > 初中数学 > 题目详情
若实数a,b满足a+b2=2,则2a2+10b2的最小值为             .
8

试题分析:解:∵




∴当,即b=0时,2a2+10b2的值最小.
∴最小值是8
点评:难度系数小,化为用表示的式子,利用的性质解答题目。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.

(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线与x轴两交点分别是(-1,0),(3,0)另有一点(0,-3)也在图象上,则该抛物线的关系式________________ .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④ a︰b︰c= -1︰2︰3.其中正确的是(    )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过点A(1,0),与轴交于点B.

(1)求抛物线的解析式和顶点坐标;
(2)若P是坐标轴上一点,且三角形PAB是以AB为腰的等腰三角形,试求P点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的函数解析式为yax2b x-3ab<0),若这条抛物线经过点(0,-3),方程ax2b x-3a=0的两根为x1x2,且|x1x2|=4.
⑴求抛物线的顶点坐标.
⑵已知实数x>0,请证明x≥2,并说明x为何值时才会有x=2.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6,该抛物线解析式为________________

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

2012年7月6日在湖南省展览馆举行了长沙动漫展,很多中学生也对动漫产生了浓厚
的兴趣,某动漫公司决定在假期举行一次中学生动漫画展,经调查发现,活动最低票价
为10元,如果以10元票价开放,平均每天有100个学生来观看,若票价每提高1元,
则相应减少10个参观者。
(1)(4分)写出平均每天观看动漫展的学生人数y(单位:人)与票价x (x为整数,单位:元)之间的关系;
(2)(6分)如果要使每天总收入为910元,票价应定为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本),若每份售价不超过10元,每天可销售400份;若每份超过10元,每提高1元,每天的销售量就减少40份,为了便于结算,每份套餐的售价X(元)取整数,用Y(元)表示该店日净收入,(日净收入=每天的销售额—套餐成本—每天固定支出)
(1)求Y与X之间的函数关系式;
(2)若每分套餐的售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?
(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入。按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?

查看答案和解析>>

同步练习册答案