精英家教网 > 初中数学 > 题目详情
已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点.
(1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN.请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等;
(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等;
(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n.现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由.精英家教网
分析:(1)根据夹在两条平行线间的线段相等,进行画图或构造等腰三角形等均可;
(2)只要画出一个轴对称图形和两条平行线相交形成一个轴对称图形即可;
(3)根据题意,即是比较(S1+S2)和(S3+S4)的大小,根据平行得到相似三角形,进一步求得相似三角形的相似比,根据三角形的面积公式和相似三角形的面积比等于相似比的平方,运用其中一个三角形的面积表示出其它三个三角形的面积,再进一步运用求差法进行比较大小.
解答:解:(1)精英家教网(3分)

(2)精英家教网(6分)

(3)∵△PMN和△QMN同底等高,
∴S△PMN=S△QMN
∴S3+S2=S4+S2
∴S3=S4.(7分)
∵△POQ∽△NOM,
OQ
OM
=
PQ
MN
=
m
n

S1
S2
=(
OQ
OM
)2=
m2
n2
.(8分)
∴S2=
n2
m2
S1

S1
S3
=
OQ
OM
=
m
n

S3=
n
m
S1
.(9分)
∴(S1+S2)-(S3+S4)=S1+
n2
m2
S1-2•
n
m
S1=S1(1+
n2
m2
-2•
n
m
)=S1(1-
n
m
2(10分)
∵m<n,
∴(1-
n
m
2>0.
∴S1+S2>S3+S4.(11分)
故园艺师应选择S1和S2两块地种植价格较便宜的花草,因为这两块的面积之和大于另两块地的面积之和.(12分)
点评:此题中能够根据三角形的面积公式和相似三角形的面积比是相似比的平方找到三角形中的面积关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:直线y=-
n
n+1
x+
2
n+1
(n为正整数)与两坐标轴围成的三角形面积为Sn,则S1+S2+S3+…+S2011=(  )
A、
1005
2011
B、
2011
2012
C、
2010
2011
D、
2011
4024

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,已知两直线a,b相交于O,∠2=30°,则∠1=
150
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•普陀区一模)在平面直角坐标系中,△ABC的顶点分别是A(-1,0),B(3,0),C(0,2),已知动直线y=m(0<m<2)与线段AC、BC分别交于D、E两点,而在x轴上存在点P,使得△DEP为等腰直角三角形,那么m的值等于
4
3
或1
4
3
或1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-2x+4交x轴于点A,交y轴于点B,点C为x轴上一点,AC=1,且OC<OA.抛物线y=ax2+bx+c(a≠0)经过点A、B、C.
(1)求该抛物线的表达式;
(2)点D的坐标为(-3,0),点P为线段AB上的一点,当锐角∠PDO的正切值是
12
时,求点P的坐标;
(3)在(2)的条件下,该抛物线上的一点E在x轴下方,当△ADE的面积等与四边形APCE的面积时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:直线y=kx+b的图象过点A(-3,1);B(-1,2),
(1)求:k和b的值;
(2)求:△AOB的面积(O为坐标原点);
(3)在x轴上有一动点C使得△ABC的周长最小,求C点坐标.

查看答案和解析>>

同步练习册答案