精英家教网 > 初中数学 > 题目详情
设a,b为整数,且方程ax2+bx+1=0的两个不同的正数根都小于1,求a的最小值.
分析:根据根与系数的关系,由两根之积确定a大于0,然后由二次函数的思想得到0<-
b
2a
<1,a+b+1>0,由判别式大于0得到a,b的关系,由a,b都是整数求出a的最小值.
解答:解:设方程的两根为x1,x2
由x1•x2=
1
a
>0,∴a>0.
由题意有:△=b2-4ac=b2-4a>0   ①
用函数的观点看一元二次方程有:0<-
b
2a
<1  ②
a+b+1>0     ③
由②③得:-(a+1)<b<0
由①得:b<-2
a

∴-(a+1)<b<-2
a
.④
当a=1,2,3,4时,满足④式的整数b不存在.
当a=5时,b=-5,这时方程是5x2-5x+1=0,两根为x=
1
2
±
5
10
在0和1之间.
故a的最小值为5.
点评:本题考查的是一元二次方程根 与系数的关系,结合一元二次方程根的判别式,然后用函数的观点看一元二次方程,得到关于a,b的不等式组,讨论a,b的取值,确定a的最小值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

求值题:
①若x+y=1,且(x+2)(y+2)=3,求x2+xy+y2的值.
②阅读下面内容,解答问题.
设x,y为整数,且x2+y2-2x+2y+2=0.求x,y的值.
解:x2+y2-2x+2y+2=0.x2+y2-2x+2y+1+1=0.
(x-1)2+(y+1)2=0,
x=1,y=-1.
问题:设a、b、c为整数,且a2+b2+c2-2a+4b-6c+14=0,求(a+c)b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

设a,b为整数,且方程ax2+bx+1=0的两个不同的正数根都小于1,求a的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

求值题:
①若x+y=1,且(x+2)(y+2)=3,求x2+xy+y2的值.
②阅读下面内容,解答问题.
设x,y为整数,且x2+y2-2x+2y+2=0.求x,y的值.
解:x2+y2-2x+2y+2=0.x2+y2-2x+2y+1+1=0.
(x-1)2+(y+1)2=0,
x=1,y=-1.
问题:设a、b、c为整数,且a2+b2+c2-2a+4b-6c+14=0,求(a+c)b的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

设a,b为整数,且方程ax2+bx+1=0的两个不同的正数根都小于1,求a的最小值.

查看答案和解析>>

同步练习册答案