精英家教网 > 初中数学 > 题目详情

当x=________时,点P(1+x,1-x)在x轴上.

1
分析:根据点在x轴上,点P的纵坐标为0,可求得x的值,即可解答.
解答:∵点P(1+x,1-x)在x轴上,
∴1-x=0,
∴x=-2
∴x=1.
故答案为1.
点评:本题主要考查点的坐标问题,解决本题的关键是掌握好坐标轴上的点的坐标的特征,x轴上的点的纵坐标为0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,BC=6cm,∠ABC=30°.D是CB上一点,DC=1cm.P、Q是直线CB上的两个动点,点P从C点出发,以1cm/s的速度沿直线CB向右运动,同时,点Q从D点出发,以2cm/s的速度沿直线CB向右运动,以PQ为一边在CB的上方作等边三角形PQR,如图是其运动过程中的某一位置.设运动的时间是t(s).
(1)△PQR的边长是
 
cm(用含有t的代数式表示);当t=
 
时,点R落在AB上.
(2)若等边△PQR与△ABC重叠部分的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.
(3)在P、Q移动的同时,以点A为圆心、tcm为半径的⊙A也在不断变化,请直接写出⊙A与△PQR的三边所在的直线相切时t的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:等腰△OAB在直角坐标系中的位置如图,点A坐标为(-3
3
,3),点B坐标为(-6,0).
(1)若将△OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=
6
3
x
的图象上,求a的值;
(2)若△OAB绕点O按逆时针方向旋转α度(0<α<360).
①当α=30°时,点B恰好落在反比例函数y=
k
x
的图象上,求k的值;
②问点A、B能否同时落在①中的反比例函数的图象上?若能,直接写出α的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.
思考
如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.
当α=
 
度时,点P到CD的距离最小,最小值为
 

探究一
在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=
 
度,此时点N到CD的距离是
 

探究二
将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.
(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;
(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数椐:sin49°=
3
4
,cos41°=
3
4
,tan37°=
3
4
.)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淮安)如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.
(1)当ι=
7
7
时,点P与点Q相遇;
(2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形?
(3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位.
①求s与ι之间的函数关系式;
②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直线PC上,求折叠后的△APD与△PCQ重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.
(1)求证:CF=AD;
(2)若AD=3,AB=8,当BC=
 
时,点B在线段AF的垂直平分线上.

查看答案和解析>>

同步练习册答案