精英家教网 > 初中数学 > 题目详情

【题目】是平面直角坐标系中的任意两点,我们把叫做P1P2两点间的直角距离,记作dP1P2);比如:点P2-4),Q10),则dPQ=,已知Q21),动点Pxy)满足dPQ=3,且xy均为整数,则满足条件的点P________个.

【答案】12

【解析】

由条件可得到|x2||y1|3,分四种情况:①x2=±3y10,②x2=±2y1=±1,③x2=±1y1=±2,④x20y1=±3,进行讨论即可求解.

依题意有

|x2||y1|3

x2=±3y10

解得

x2=±2y1=±1

解得

x2=±1y1=±2

解得

x20y1=±3

解得

故满足条件的点P12个.

故答案为:12

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,折叠菱形纸片ABCD,使得AD′对应边过点C,若∠B60°,AB2,当AEAB时,AE的长是(  )

A.2B.2C.D.1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(A点左侧)双曲线的动点.过B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.

(1)若点D坐标是(-8,0),求A、B两点坐标及k的值

(2)B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式

(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求pq的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为建设国家森林城市,园林部门决定搭配A.B两种园艺造型共50个摆放在市区,现有3490盆甲种花卉和2950盆乙种花卉可供使用,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90.

1)问符合题意的搭配方案有几种?请你帮助设计出来;

2)若搭配一个A种造型的费用是800元,搭配一个B种造型的费用是960元,试说明(1)中哪种方案费用最低?最低费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtOAB的直角边OAx轴上,顶点B的坐标为(6,8),直线CDAB于点D(6,3),交x轴于点C(12,0).

(1)求直线CD的函数表达式;

(2)动点Px轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.

①点P在运动过程中,是否存在某个位置,使得∠PDA=B?若存在,请求出点P的坐标;若不存在,请说明理由;

②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BCGE,AFDE,1=50°

(1)求AFG的度数;

(2)若AQ平分FAC,交BC于点Q,且Q=15°,求ACB的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AMCN,点B为平面内一点,ABBCB.

(1)如图1,直接写出∠A和∠C之间的数量关系___

(2)如图2,过点BBDAM于点D,求证:∠ABD=C

(3)如图3,(2)问的条件下,E. FDM,连接BEBFCF,BF平分∠DBC,BE平分∠ABD,若∠FCB+NCF=180°,∠BFC=3DBE,求∠EBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )

A. 16 B. 18 C. 20 D. 21

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某校学生对以下四个电视节目:最强大脑中国诗词大会朗读者出彩中国人的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.

请你根据图中所提供的信息,完成下列问题:

本次调查的学生人数为______

在扇形统计图中,A部分所占圆心角的度数为______

请将条形统计图补充完整;

若该校共有3000名学生,估计该校最喜爱中国诗词大会的学生有多少名.

查看答案和解析>>

同步练习册答案