精英家教网 > 初中数学 > 题目详情
(2013•闸北区一模)在△ABC中,中线AD、BE相交于点O,且S△BOD=5,则△ABC的面积是(  )
分析:根据三角形的重心到顶点的长度等于到对边中点的长度的2倍可得OD=2AO,再根据等高的三角形的面积等于底边的比求出△AOB的面积,然后等底等高的三角形的面积相等求解即可.
解答:解:如图,∵中线AD、BE相交于点O,
∴O是△ABC的重心,
∴OD=
1
2
AO,
∵S△BOD=5,
∴S△AOB=2S△BOD=2×5=10,
∴S△ABD=10+5=15,
∵AD是中线,
∴△ABC的面积=2S△ABD=2×15=30.
故选A.
点评:本题考查了三角形的重心,三角形的重心到顶点的长度等于到对边中点的长度的2倍,等高的三角形的面积等于底边的比以及等底等高的三角形的面积相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,二次函数y=
2
3
x2-
4
3
x-
16
3
的图象与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为Q,直线QB与y轴交于点E.
(1)求点E的坐标;
(2)在x轴上方找一点C,使以点C、O、B为顶点的三角形与△BOE相似,请直接写出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)在坡度为i=1:2.4的斜坡上每走26米就上升了
10
10
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点M、N分别在边AO和边OD上,且AM=
2
3
AO,ON=
1
3
OD,设
AB
=
a
BC
=
b
,试用
a
b
的线性组合表示向量
OM
和向量
MN

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,EC和BD相交于点O,联接DE.
(1)求证:△EOD∽△BOC;
(2)若S△EOD=16,S△BOC=36,求
AEAC
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闸北区一模)已知:如图,在△ABC中,AB=AC=15,cos∠A=
45
.点M在AB边上,AM=2MB,点P是边AC上的一个动点,设PA=x.
(1)求底边BC的长;
(2)若点O是BC的中点,联接MP、MO、OP,设四边形AMOP的面积是y,求y关于x的函数关系式,并出写出x的取值范围;
(3)把△MPA沿着直线MP翻折后得到△MPN,是否可能使△MPN的一条边(折痕边PM除外)与AC垂直?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案