精英家教网 > 初中数学 > 题目详情
(2006•滨州)如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成长方形零件PQMN,使长方形PQMN的边QM在BC上,其余两个顶点P,N分别在AB,AC上.
(Ⅰ)求这个长方形零件PQMN面积S的最大值;
(Ⅱ)在这个长方形零件PQMN面积最大时,能否将余下的材料△APN,△BPQ,△NMC剪下再拼成(不计接缝用料及损耗)与长方形PQMN大小一样的长方形?若能,试给出一种拼法;若不能,试说明理由.

【答案】分析:(1)设长方形零件PQMN的边PN=a,PQ=x,则AE=80-x,利用△APN∽△ABC得相似比,用相似比可得出用含x的式子表示a,故S=x•a,从而得出二次函数解析式,根据解析式及自变量取值范围求S的最大值;
(2)S的最大值是2400mm2,而△ABC的面积是4800mm2,故剩下部分面积是2400mm2,而此时PQ=AD=40,故P,Q分别为AB,AC的中点,易证△PBQ≌△PAG,△NMC≌△NHA,可达到拼接的目的.
解答:解:(1)设长方形零件PQMN的边PN=a,PQ=x,则AE=80-x.
∵PN∥BC,
∴△APN∽△ABC.

因此,.(1分)
解得a=120-x.(2分)
所以长方形PQMN的面积S=xa=x(120-x)=-x2+120x.(3分)
当x=-=40时,a=60.(4分)
S最大值=40×60=2400(mm2).
所以这个长方形零件PQMN面积S的最大值是2400mm2.(5分)

(2)∵S△ABC-2S最大值=×120×80-2×2400=0,
∴从理论上说,恰能拼成一个与长方形PQMN大小一样的长方形.
拼法:作△ABC的中位线PN,分别过P,N作BC的
垂线,垂足分别为Q,M,过A作BC的平行线,交QP,MN的延长线于G,H,易知△PBQ≌△PAG,△NMC≌△NHA,
所以将△PBQ,△NMC剪下拼接到△PAG,△NHA的位置,
即得四边形PNHG,此四边形即为长方形零件PQMN面积最大时大小一样的长方形.
(注:拼法描述正确得(2分),画图正确得(1分).)
点评:本题用二次函数的方法解决面积问题,是函数性质的实际运用,需要从计算矩形面积着手,求矩形的长、宽,同时考查了拼接问题,需要从图形的特殊性着手.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(10)(解析版) 题型:解答题

(2006•滨州)如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成长方形零件PQMN,使长方形PQMN的边QM在BC上,其余两个顶点P,N分别在AB,AC上.
(Ⅰ)求这个长方形零件PQMN面积S的最大值;
(Ⅱ)在这个长方形零件PQMN面积最大时,能否将余下的材料△APN,△BPQ,△NMC剪下再拼成(不计接缝用料及损耗)与长方形PQMN大小一样的长方形?若能,试给出一种拼法;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《分式方程》(02)(解析版) 题型:填空题

(2006•滨州)如图,在Rt△ABC中,E为斜边AB上一点,AE=2,EB=1,四边形DEFC为正方形,则阴影部分的面积为   

查看答案和解析>>

科目:初中数学 来源:2010年中考数学“选择、填空题”专练(一)(解析版) 题型:填空题

(2006•滨州)如图,在Rt△ABC中,E为斜边AB上一点,AE=2,EB=1,四边形DEFC为正方形,则阴影部分的面积为   

查看答案和解析>>

科目:初中数学 来源:2006年山东省滨州市中考数学试卷(解析版) 题型:选择题

(2006•滨州)如图,在半径为10的⊙O中,如果弦心距OC=6,那么弦AB的长等于( )

A.4
B.8
C.16
D.32

查看答案和解析>>

同步练习册答案