ÔĶÁÏÂÁнⷽ³Ì×éµÄ·½·¨£¬È»ºó½â´ðÎÊÌ⣺
½â·½³Ì×éÊýѧ¹«Ê½Ê±£¬ÓÉÓÚx¡¢yµÄϵÊý¼°³£ÊýÏîµÄÊýÖµ½Ï´ó£¬Èç¹ûÓó£¹æµÄ´úÈëÏûÔª·¨¡¢¼Ó¼õÏûÔª·¨À´½â£¬Äǽ«ÊǼÆËãÁ¿´ó£¬ÇÒÒ׳öÏÖÔËËã´íÎ󣬶ø²ÉÓÃÏÂÃæµÄ½â·¨Ôò±È½Ï¼òµ¥£º
¢Ú-¢ÙµÃ£º3x+3y=3£¬ËùÒÔx+y=1¢Û
¢Û¡Á14µÃ£º14x+14y=14¢Ü
¢Ù-¢ÜµÃ£ºy=2£¬´Ó¶øµÃx=-1
ËùÒÔÔ­·½³Ì×éµÄ½âÊÇÊýѧ¹«Ê½
£¨1£©ÇëÄãÔËÓÃÉÏÊö·½·¨½â·½³Ì×éÊýѧ¹«Ê½
£¨2£©ÇëÄãÖ±½Óд³ö·½³Ì×éÊýѧ¹«Ê½µÄ½âÊÇ________£»
£¨3£©²Â²â¹ØÓÚx¡¢yµÄ·½³Ì×éÊýѧ¹«Ê½£¨m¡Ùn£©µÄ½âÊÇʲô£¿²¢Ó÷½³Ì×éµÄ½â¼ÓÒÔÑéÖ¤£®

½â£º£¨1£©¢Ú-¢ÙµÃ£º3x+3y=3£¬ËùÒÔx+y=1¢Û
¢Û¡Á2005µÃ£º2005x+2005y=2005¢Ü
¢Ù-¢ÜµÃ£ºy=2£¬
°Ñy=2´úÈë¢ÛµÃ£ºx+2=1£¬
½âµÃ£ºx=-1
ËùÒÔÔ­·½³Ì×éµÄ½âÊÇ£º
£¨2£©
£¨3£©
µ±x=-1£¬y=2ʱ£¬µÚÒ»¸ö·½³Ì£º×ó±ß=-m+£¨m+1£©¡Á2=-m+2m+2=m+2=ÓÒ±ß
µÚ¶þ¸ö·½³Ì£º×ó±ß=-n+£¨n+1£©¡Á2=-n+2n+2=n+2=ÓÒ±ß
¡àÊÇÔ­·½³Ì×éµÄ½â£®
·ÖÎö£º£¨1£©¡¢£¨2£©ÀûÓá°¼Ó¼õÏûÔª¡±À´½â·½³Ì×飻
£¨3£©ÏȼÙÉè¸Ã·½³Ì×éµÄ½â£¬È»ºó´úÈëÔ­·½³Ì×éÑéÖ¤¼´¿É£®
µãÆÀ£º±¾Ì⿼²é¶þÔªÒ»´Î·½³Ì×éºÍÈýÔªÒ»´Î·½³Ì×éµÄ½â·¨£¬ÓмӼõ·¨ºÍ´úÈë·¨Á½ÖÖ£¬Ò»°ãÑ¡ÓüӼõ·¨½â¶þÔªÒ»´Î·½³Ì×é½Ï¼òµ¥£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁнⷽ³Ì×éµÄ·½·¨£¬È»ºó»Ø´ðÎÊÌ⣮
½â·½³Ì×é
19x+18y=17(1)
17x+16y=15(2)

½â£ºÓÉ£¨1£©-£¨2£©µÃ2x+2y=2¼´x+y=1£¨3£©
£¨3£©¡Á16µÃ16x+16y=16£¨4£©
£¨2£©-£¨4£©µÃx=-1£¬´Ó¶ø¿ÉµÃy=2
¡à·½³Ì×éµÄ½âÊÇ
x=-1
y=2
£®
£¨1£©ÇëÄã·ÂÉÏÃæµÄ½â·¨½â·½³Ì×é
2008x+2007y=2006
2006x+2005y=2004
£®
£¨2£©²Â²â¹ØÓÚx¡¢yµÄ·½³Ì×é
(a+2)x+(a+1)y=a
(b+2)x+(b+1)y=b
(a¡Ùb)
µÄ½âÊÇʲô£¬²¢ÀûÓ÷½³Ì×éµÄ½â¼ÓÒÔÑéÖ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁнⷽ³Ì×éµÄ·½·¨£¬È»ºó½â¾öÓйØÎÊÌ⣮½â·½³Ì×é 
100x+98y=96
80x+78y=76
ʱ£¬ÎÒÃÇÈç¹ûÖ±½Ó¿¼ÂÇÏûÔª£¬ÄÇÊǷdz£Âé·³µÄ£¬¶ø²ÉÓÃÏÂÃæµÄ½â·¨Ôò½Ï¼òµ¥£®¢Ù-¢Ú£¬µÃ20x+20y=20£¬Ôòx+y=1£¬¢Û£»¢Û¡Á100£¬µÃ100x+100y=100£¬¢Ü£¬¢Ü-¢Ù£¬µÃ2y=4£¬Ôòy=2£¬´Ó¶øx=-1£®ËùÒÔÔ­·½³Ì×éµÃ½â£®ÇëÄãÓÃÉÏÊö·½·¨½â·½³Ì×飻²¢²ÂÏë·½³Ì×é 
2010x+2008y=2006¢Ù
2008x+2006y=2004
 £¨a¡Ùb£©µÄ½â£¬ÇëÑéÖ¤ÄãµÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁнⷽ³Ì×éµÄ·½·¨£¬È»ºó»Ø´ðÎÊÌ⣮
½â·½³Ì×é
19x+18y=17 ¢Ù
17x+16y=15 ¢Ú

½â£ºÓÉ¢Ù-¢ÚµÃ2x+2y=2  ¼´x+y=1
¢Û¡Á16µÃ16x+16y=16   ¢Ü
¢Ú-¢ÜµÃx=-1£¬´Ó¶ø¿ÉµÃy=2
¡àÔ­·½³Ì×éµÄ½âÊÇ
x=-1
y=2
£®
£¨1£©ÇëÄã·ÂÉÏÃæµÄ½â·¨½â·½³Ì×é
2012x+2011y=2010
2010x+2009y=2008
£»
£¨2£©Çë´óµ¨²Â²â¹ØÓÚx¡¢yµÄ·½³Ì×é
(a+2)x+(a+1)y=a
(b+2)x+(b+1)y=b  
(a¡Ùb)
µÄ½âÊÇʲô£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁнⷽ³Ì×éµÄ·½·¨£¬È»ºó½â¾öÓйØÎÊÌ⣮
½â·½³Ì×é
19x+18y=17£¬(1)
17x+16y=15£¬(2)
ʱ£¬ÎÒÃÇÈç¹ûÖ±½Ó¿¼ÂÇÏûÔª£¬ÄÇô·Ç³£Âé·³£¬¶ø²ÉÓÃÏÂÁнⷨÔòÇá¶øÒ×¾Ù£®
£¨1£©-£¨2£©£¬µÃ2x+2y=2£¬¼´x+y=1  £¨3£©
£¨3£©¡Á16£¬µÃ16x+16y=16  £¨4£©
£¨2£©-£¨4£©£¬µÃx=-1£¬´Ó¶øy=2
ËùÒÔÔ­·½³Ì×éµÄ½âÊÇ
x=-1
y=2.

£¨1£©ÇëÄãÓÃÉÏÊö·½·¨½â·½³Ì×é
7x+11y=15£¬(1)
13x+17y=21£®(2)

£¨2£©ÊԲ²â¹ØÓÚx¡¢yµÄ¶þÔªÒ»´Î·½³Ì×é
ax+(a+m)y=a+2m
bx+(b+m)y=b+2m.
£¨a¡Ùb£©µÄ½âÊÇʲô£¿²¢¼ÓÒÔÑéÖ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁнⷽ³Ì×éµÄ·½·¨£¬È»ºó½â¾öºóÃæµÄÎÊÌ⣺
½â·½³Ì×é
19x+18y=17 ¢Ù
17x+16y=15 ¢Ú
 Ê±£¬ÎÒÃÇÈç¹ûÖ±½Ó¿¼ÂÇÏûÔª£¬Äǽ«ÊÇ·±²»Ê¤·±µÄ£¬¶ø²ÉÓÃÏÂÃæµÄ½â·¨ÔòÊÇÇá¶øÒ׾ٵģ®
½â£º¢Ù-¢ÚµÃ£¬2x+2y=2£¬¡àx+y=1¢Û
½«¢Û¡Á16£¬µÃ16x+16y=16¢Ü
¢Ú-¢Ü£¬µÃx=-1£¬´Ó¶øÓÉ¢Û£¬µÃy=2
¡à·½³Ì×éµÄ½âÊÇ
x=-1
y=2

£¨1£©ÇëÓÃÉÏÊöµÄ·½·¨½â·½³Ì×é
2004x+2003y=2002
2002x+2001y=2000

£¨2£©²¢²ÂÏë¹ØÓÚx¡¢yµÄ·½³Ì×é
(a+2)x+(a+1)y=a
ax+(a-1)y=a-2
µÄ½âÊÇʲô£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸