精英家教网 > 初中数学 > 题目详情
3.计算(π-$\sqrt{3}$)0+($\frac{1}{2}$)-1-|$\sqrt{3}$-1|-tan60°+$\sqrt{12}$.

分析 直接化简二次根式、再利用负整数指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简各数得出答案.

解答 解:原式=1+2-($\sqrt{3}$-1)-$\sqrt{3}$+2$\sqrt{3}$
=4.

点评 此题主要考查了实数运算,正确把握相关性质化简各数是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.若分式$\frac{2}{x-1}$有意义,则x的取值范围是(  )
A.x=1B.x≠1C.x>1D.x<1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知抛物线经过点A(-3,0),F(8,0),B(0,4)三点
(1)求抛物线解析式及对称轴;
(2)若点D在线段FB上运动(不与F,B重合),过点D作DC⊥轴于点C(x,0),将△FCD沿CD向左翻折,点B对应点为点E,△CDE与△FBO重叠部分面积为S.
①试求出S与x之间的函数关系式,并写出自变量取值范围.
②是否存在这样的点C,使得△BDE为直角三角形,若存在,求出C点坐标,若不存在,请说明理由;
(3)抛物线对称轴上有一点M,平面内有一点N,若以A,B,M,N四点组成的四边形为菱形,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.设函数y=$\frac{3}{x}$与y=-2x-6的图象的交点坐标为(a,b),则$\frac{1}{a}$+$\frac{2}{b}$的值是-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,平面直角坐标系中,O为坐标原点,等腰Rt△OAB的顶点B在第一象限,直角边OA在y轴上,点P是边AB上的一个三等分点,过点P的反比例函数y=$\frac{k}{x}$的图象交斜边OB于点Q,△AOQ的面积为3,则k的值为2$\sqrt{3}$或2$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.当a=$\sqrt{2}$时,计算分式$\frac{a+3}{a}$•$\frac{6}{{a}^{2}+6a+9}$+$\frac{2a-6}{{a}^{2}-9}$的值是$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知关于x的一元二次方程x2-(5m+1)x+4m2+m=0.
(1)求证:无论m取任何实数时,原方程总有两个实数根;
(2)如果对于原方程的每一个整数根,都满足两根之商也是整数,直接写出m的取值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,AB是⊙O的直径,C点在⊙O上,连接AC,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,sin∠BAC=$\frac{4}{5}$,连接CD,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知:如图,圆锥的底面直径是10cm,高为12cm,则它的侧面展开图的面积是65πcm2

查看答案和解析>>

同步练习册答案