分析 (1)如图1,过点A作AD⊥BC于D,根据等腰三角形三线合一的性质可得BC=2BD,根据直角三角形30°角所对的直角边等于斜边的一半可得AD=$\frac{1}{2}$AB,再利用勾股定理列式求出BD,然后根据三角形的面积公式列式计算即可得解;
(2)如图2,过点B作BD⊥AC于D,根据直角三角形的性质得到BD=$\frac{1}{2}$a,然后根据三角形的面积公式列式计算即可得解.
解答 解:(1)如图1,过点A作AD⊥BC于D,
∵△ABC是等腰三角形,
∴BC=2BD,
∵底角∠B=30°,
∴AD=$\frac{1}{2}$AB=$\frac{1}{2}$a,
由勾股定理得,BD=$\sqrt{A{B}^{2}-A{D}^{2}}$=$\frac{\sqrt{3}}{2}$a,
∴BC=2BD=$\sqrt{3}$a,
∴三角形的面积=$\frac{1}{2}$×$\sqrt{3}$a×$\frac{1}{2}$a=$\frac{\sqrt{3}}{4}$a2.
(2)如图2,过点B作BD⊥AC于D,
∵∠A=30°,
∴BD=$\frac{1}{2}$a,
∴S△ABC=$\frac{1}{2}$AC•BD=$\frac{1}{4}$a2,
故答案为:$\frac{1}{4}$a2或$\frac{\sqrt{3}}{4}$a2.
点评 本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质是解题的关键,作出图形更形象直观.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5cm | B. | 10cm | C. | 20cm | D. | 15cm |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com