精英家教网 > 初中数学 > 题目详情
9.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为(  )
A.1B.3C.-1D.-3

分析 将自变量x的值代入函数解析式求解即可.

解答 解:x=-1时,y=-(-1)+2=1+2=3.
故选B.

点评 本题考查了函数值的计算:(1)当已知函数解析式时,求函数值就是求代数式的值;
(2)函数值是唯一的,而对应的自变量可以是多个.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.图中的大正方形是由4个小正方形组成的,小正方形边长为1,连接小正方形的三个顶点,得到△ABC,则AC边上的高为(  )
A.$\frac{3\sqrt{5}}{5}$B.$\frac{4\sqrt{5}}{5}$C.$\frac{5\sqrt{5}}{10}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若以A(-1,0)、B(2,0)、C(0,1)三点为顶点画平行四边形,则第四个顶点可能在第一、二、四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.A,B两地相距120km,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即按原速返回.如图是它们离A地的距离y(km)与行驶时间x(h)之间的函数图象.
(1)求甲车返回时(即CD段)y与x之间的函数解析式;
(2)若当它们行驶了2.5h时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
(3)当两车相距30km时,甲车行驶的时间为$\frac{5}{4}$h、$\frac{35}{16}$h、$\frac{45}{16}$h.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知任意一个三角形的三个内角的和是180°.
(1)如图1,在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O.
①若∠A=70°,求∠BOC的度数;
②若∠A=α,求∠BOC的度数;
(2)如图2,若BO、CO分别是∠ABC、∠ACB的三等分线,也就是∠OBC=$\frac{1}{3}$∠ABC,∠OCB=$\frac{1}{3}$∠ACB,∠A=α,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.通过学习同学们已经体会到灵活运用乘法公式给整式的乘法运算带来的方便、快捷,相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52                ②
=39975.
(1)例题的求解过程中,第②步变形是利用平方差公式(填乘法公式的名称);
(2)用简便方法计算:20172-2016×2018.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.在△ABC中,∠C=90°,若AB=2,则AB2+AC2+BC2=8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.点A,B,C在同一条数轴上,其中点A,B表示的数分别是-3,1,若BC=5,则AC=9或1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算题
(1)$\sqrt{0.16}$+$\root{3}{-27}$+$\sqrt{(-2)^{2}}$+(-1)2017
(2)|$\sqrt{2}$-$\sqrt{5}$|-|3-$\sqrt{5}$|+|$\sqrt{2}$-1|

查看答案和解析>>

同步练习册答案