精英家教网 > 初中数学 > 题目详情
如图是某种品牌太阳能横断面示意图,已知真空精英家教网管AD=150cm,∠ADH=30°,支架CH与水平面DH垂直,另一根辅助支架CE=76cm,∠CEH=60°.
(1)求垂直支架CH的长度.
(2)求太阳能水箱的半径OC.(结果精确到1cm,
3
≈1.7
分析:(1)首先弄清题意,了解每条线段的长度与线段之间的关系,在△CHE中利用三角函数sin60°=
CH
HE
,求出CH的长.
(2)首先设出水箱半径OC的长度为x厘米,表示出OH,DO的长度,根据直角三角形的性质得到OH=
1
2
DO,再代入数计算即可得到答案.
解答:解:(1)∵CE=76厘米,∠CEH=60°,
∴tan60°=
CH
HE
=
CH
76

∴CH=38
3
cm.
答:垂直支架CH的长度为38
3
cm.

(2)设水箱半径OC的长度为x厘米,则HO=(38
3
+x)厘米,OD=(150+x)厘米,
∵∠ADH=30°,
∴OH=
1
2
DO,
38
3
+x=
1
2
(150+x),
解得:x=150-76
3
=150-131.48≈19cm.
答:太阳能水箱的半径OC的长度约为19cm.
点评:此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,做题的关键是表示出线段的长后,理清线段之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源:2012年江苏省苏州市常熟一中中考数学二模试卷(解析版) 题型:解答题

如图是某种品牌太阳能横断面示意图,已知真空管AD=150cm,∠ADH=30°,支架CH与水平面DH垂直,另一根辅助支架CE=76cm,∠CEH=60°.
(1)求垂直支架CH的长度.
(2)求太阳能水箱的半径OC.(结果精确到1cm,

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学模拟试卷(二)(解析版) 题型:解答题

如图是某种品牌太阳能横断面示意图,已知真空管AD=150cm,∠ADH=30°,支架CH与水平面DH垂直,另一根辅助支架CE=76cm,∠CEH=60°.
(1)求垂直支架CH的长度.
(2)求太阳能水箱的半径OC.(结果精确到1cm,

查看答案和解析>>

同步练习册答案