精英家教网 > 初中数学 > 题目详情

【题目】我们把两条中线互相垂直的三角形称为“中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”,设BC=a,AC=b,AB=c.

(1)【特例探索】
如图1,当∠ABE=45°,c=2 时,a= , b=;如图2,当∠ABE=30°,c=4时,a= , b=
(2)【归纳证明】
请你观察(1)中的计算结果,猜想a2 , b2 , c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;
(3)【拓展应用】
如图4,在ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=2 ,AB=3.求AF的长.

【答案】
(1)2 ;2 ;2 ;2
(2)

猜想:a 2,b2,c2三者之间的关系是:a2+b2=5c2

证明:如图3,连接EF,

∵AF,BE是△ABC的中线,

∴EF是△ABC的中位线,

∴EF∥AB.且 EF= AB= c.

设 PF=m,PE=n 则AP=2m,PB=2n,

在Rt△APB中,(2m)2+(2n)2=c2

在Rt△APE中,(2m)2+n2=( 2

在Rt△BPF中,m2+(2n)2=( 2

由①得:m2+n2= ,由②+③得:5( m2+n2)=

∴a 2+b2=5 c2


(3)

如图4,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,

∵点E、G分别是AD,CD的中点,

∴EG∥AC,

∵BE⊥EG,

∴BE⊥AC,

∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC=2

∴∠EAH=∠FCH,

∵E,F分别是AD,BC的中点,

∴AE= AD,BF= BC,

∴AE=BF=CF= AD=

∵AE∥BF,

∴四边形ABFE是平行四边形,

∴EF=AB=3,AP=PF,

在△AEH和△CFH中,

∴△AEH≌△CFH,

∴EH=FH,

∴EP,AH分别是△AFE的中线,

由(2)的结论得:AF2+EF2=5AE2

∴AF2=5( 2﹣EF2=16,

∴AF=4.


【解析】解:(1.)∵AF⊥BE,∠ABE=45°,
∴AP=BP= AB=2,
∵AF,BE是△ABC的中线,
∴EF∥AB,EF= AB=
∴∠PFE=∠PEF=45°,
∴PE=PF=1,
在Rt△FPB和Rt△PEA中,
AE=BF= =
∴AC=BC=2
∴a=b=2
如图2,连接EF,

同理可得:EF= ×4=2,
∵EF∥AB,
∴△PEF~△ABP,

在Rt△ABP中,
AB=4,∠ABP=30°,
∴AP=2,PB=2
∴PF=1,PE=
在Rt△APE和Rt△BPF中,
AE= ,BF=
∴a=2 ,b=2
所以答案是:2 ,2 ,2 ,2
【考点精析】解答此题的关键在于理解三角形的“三线”的相关知识,掌握1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内,以及对相似三角形的应用的理解,了解测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:已知在△ABC中,边AB上的动点D由A向B运动(与A,B不重合),同时点E由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点,求 的值.
(1)初步尝试
如图(1),若△ABC是等边三角形,DH⊥AC,且点D、E的运动速度相等,小王同学发现可以过点D作DG∥BC交AC于点G,先证GH=AH,再证GF=CF,
从而求得 的值为

(2)类比探究
如图(2),若△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是 :1,求 的值.

(3)延伸拓展
如图(3)若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记 =m,且点D、E的运动速度相等,试用含m的代数式表示 的值(直接写出果,不必写解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是(
A.( 2016
B.( 2017
C.( 2016
D.( 2017

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,直线轴交于点,直线轴及直线分别交于点.关于轴对称,连接.

(1)求点的坐标及直线的表达式;

(2)设面积的和,求的值;

(3)在求(2)时,嘉琪有个想法:“将沿轴翻折到的位置,与四边形拼接后可看成,这样求便转化为直接求的面积不更快捷吗?”但大家经反复验算,发现,请通过计算解释他的想法错在哪里.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】班长调查了三班近 10 天的数学课堂小测验,在这 10 天,小测验的不及格人数为(单位:个)0,2,0, 3,1,1,0,2,5,1.在这 10 天中小测验不及格的人数(

A. 中位数为 1.5 B. 方差为 1.5 C. 极差为 1.5 D. 标准差为 1.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:

特殊网图

结点数(V

4

6

9

12

网眼数(F

1

2

4

6

边数(E

4

7

12

表中处应填的数字为_____;根据上述探索过程,可以猜想VFE之间满足的等量关系为_____

如图2,若网眼形状为六边形,则VFE之间满足的等量关系为___ 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰中,=90°,的平分线分别交两点,的中点,延长于点,连接.下列结论:① ;② ;③ ;④;上述结论中正确的个数是( )

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

同步练习册答案