精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求:
(1)对角线AC的长度为
 
cm;
(2)菱形ABCD的面积为
 
cm2
分析:(1)因为菱形的对角线互相垂直平分,可利用勾股定理求得AE或CE的长,从而求得AC的长;
(2)利用菱形的面积公式:两条对角线的积的一半求得面积.
解答:解:(1)∵四边形ABCD为菱形
∴∠AED=90°
∵DE=
1
2
BD=
1
2
×10=5(cm)
∴AE=
AD2-DE2
=
132-52
=12(cm)
∴AC=2AE=2×12=24(cm)

(2)S菱形ABCD=S△ABD+S△BDC=
1
2
BD•AE+
1
2
BD•CE
=
1
2
BD(AE+CE)
=
1
2
BD•AC=
1
2
×10×24
=120(cm2
点评:主要考查菱形的面积公式:两条对角线的积的一半和菱形的对角线性质,综合利用了勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图所示,四边形ABCD是平行四边形,E,F分别在AD,CB的延长线上,且DE=BF,连接FE分别交AB,CD于点H,G.
(1)观察图中有
2
对全等三角形;
(2)聪明的你如果还有时间,请在上图中连接AF,CE,你将发现图中出现了更多的全等三角形.请在下面的横线上再写出两对与(1)不同的全等三角形(不用证明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,四边形ABCD为⊙O的内接四边形,E为AB延长线的上一点,∠CBE=40°,则∠AOC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,四边形ABCD中,E、F分别为AD、BC的中点.
(1)当AB∥CD而AD与BC不平行时,四边形ABCD称为
 
形,线段EF叫做其
 
,EF与AB+CD的数量关系为
 

(2)当AB与CD不平行,AD与BC也不平行时,猜想EF与AB+CD的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,四边形ABCD是正方形,E、F是AB、BC的中点,连接EC交DB、DF于G、H,则EG:GH:HC=
 
精英家教网

查看答案和解析>>

科目:初中数学 来源:新课标 读想练同步测试 七年级数学(下) 北师大版 题型:044

如图所示,四边形AB-CD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,试说明,无论点P在BC上如何移动,总有α+β=∠B.

查看答案和解析>>

同步练习册答案