精英家教网 > 初中数学 > 题目详情
如图所示,AB为⊙O的直径,D为
BC
中点,连接BC交AD于E,DG⊥AB于G.
(1)求证:BD2=AD•DE;
(2)如果tanA=
3
4
,DG=8,求DE的长.
分析:(1)连接BD,先由D为
BC
中点,根据圆心角、弧、弦的关系及圆周角定理得出
BD
=
CD
,∠DAB=∠DBE,又∠ADB公共,根据两角对应相等的两三角形相似得出△BDE∽△ADB,然后由相似三角形对应边成比例得出BD:AD=DE:BD,即为BD2=AD•DE;
(2)先在Rt△ADG中,由tanA=
3
4
,DG=8,求出AD=
40
3
,然后解Rt△ADB,求出BD=10,再根据(1)的结论BD2=AD•DE,即可求出DE的长.
解答:(1)证明:连接BD.
∵D为
BC
中点,
BD
=
CD

∴∠DAB=∠DBE,
又∵∠BDE=∠ADB,
∴△BDE∽△ADB,
∴BD:AD=DE:BD,
∴BD2=AD•DE;

(2)解:∵DG⊥AB于G,
∴∠AGD=90°.
∵AB为⊙O的直径,
∴∠ADB=90°.
在Rt△ADG中,∵tanA=
3
4
,∴
DG
AG
=
3
4

设DG=3k,则AG=4k,AD=5k,∴
DG
AD
=
3
5

又∵DG=8,∴AD=
40
3

在Rt△ADB中,tanA=
BD
AD
=
3
4
,∴BD=
3
4
AD=10.
∵BD2=AD•DE,
∴DE=
BD2
AD
=
102
40
3
=
15
2
点评:本题考查了圆心角、弧、弦的关系,圆周角定理,相似三角形的判定与性质,勾股定理,解直角三角形,综合性较强,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,AB为半圆O的直径,C、D、E、F是
AB
上的五等分点,P为直径AB上的任意一点,若AB=4,则图中阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB为圆O的弦,OC垂直AB于点C,OC=3,若圆O的半径为5,则弦AB的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•孝南区一模)已知,如图所示,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交于⊙O于点E,∠BAC=45°,给出以下四个结论:
①BD=CD;②∠EBC=22.5°;③AE=2EC;④
AE
=2
DE
AE
DE
为劣弧)
其中正确结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AB为⊙O的直径,AC为弦,OD∥BC交AC于D,若AB=20cm,∠A=30°,则OD=
5cm
5cm

查看答案和解析>>

同步练习册答案