精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,过顶点B的一条直线把△ABC分割成两个等腰三角形,且∠C是其中一个等腰三角形的顶角.
(1)当∠C=40°时,∠ABC是多少度?说明理由;
(2)当∠C为△ABC中最小角时,那么∠A也能为另外一个等腰三角形的顶角吗?为什么?并探究∠ABC与∠C之间的数量关系.
分析:(1)过B作直线BE交AC于D.可以求出∠DBC和∠ADB的度数,从而求解;
(2)由于同一个三角形中内角不能存在两个钝角,反证法即可得出)∠A不能为另一等腰三角形的顶角,再根据等腰三角形的性质求解.
解答:解:(1)过B作直线BE交AC于D.
∵∠C为顶角,
∴∠DBC=∠CDB=
180°-40°
2
=70°,
∴∠ADB=110°,∠ABD=∠A=
180°-110°
2
=35°

∴∠ABC=35°+70°=105°.

(2)∠A不能为另一等腰三角形的顶角.
∵∠ADB=∠C+
180°-∠C
2
=90°+
1
2
∠C

∴∠ADB为钝角,
又∵同一个三角形中内角不能存在两个钝角,
∴∠A不能为顶角.
当∠ADB为顶角时,∠ABC=∠ABD+∠DBC=
1
2
∠CDB
+∠DBC=
3
2
∠CDB
=135°-
3
4
∠C.
点评:考查了等腰三角形的性质,注意同一个三角形中内角不能存在两个钝角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案