精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD边长为12,E为CD上一点,沿AE将△ADE折叠得△AEF,延长EF交BC于G,连接AG、CF,BG=6,下列说法正确的有
①△ABG≌△AFG;②DE=4;③AG∥CF;④数学公式


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
D
分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.
解答:①正确.
因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,
∴△ABG≌△AFG(HL);
②正确.
因为:EF=DE,设DE=FE=x,则CG=6,EC=12-x.
在直角△ECG中,根据勾股定理,得(12-x)2+36=(x+6)2
解得x=4.
∴DE=4.
③正确.
因为CG=BG=GF,
所以△FGC是等腰三角形,∠GFC=∠GCF.
又∵∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
④正确.
过F作FH⊥DC,
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
=,EF=DE=4,GF=6,
∴EG=10,
∴△EFH∽△EGC,
∴相似比为:==
∴S△FGC=S△GCE-S△FEC=×6×8-×8×(×6)=
综上可得①②③④正确,共4个.
故选D.
点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案