精英家教网 > 初中数学 > 题目详情
如图所示是二次函数y=-
1
2
x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是(  )
A.4B.
16
3
C.2πD.8

函数y=-
1
2
x2+2与y轴交于(0,2)点,与x轴交于(-2,0)和(2,0)两点,
则三点构成的三角形面积s1=
1
2
×4×2
=4,
则以半径为2的半圆的面积为s2=π×
1
2
×22
=2π,
则阴影部分的面积s有:4<s<2π.
因为选项A、C、D均不在S取值范围内.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过C点作⊙A的切线BC交x轴于B.
(1)求直线BC的解析式;
(2)若一抛物线与x轴的交点恰为⊙A与x轴的两个交点,且抛物线的顶点在直线上y=
3
3
x+2
3
上,求此抛物线的解析式;
(3)试判断点C是否在抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=3x-3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,抛物线y=ax2+bx+c与x轴相交于O、A两点直线y=-x+3与y轴交于B点,与该抛物线交于A,D两点,已知点D横坐标为-1.(1)求这条抛物线的解析式;
(2)如图①,在线段OA上有一动点H(不与O、A重合),过H作x轴的垂线分别交AB于P点,交抛物线于Q点,若x轴把△POQ分成两部分的面积之比为1:2,请求出H点的坐标;
(3)如图②,在抛物线上是否存在点C,使△ABC为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-
1
4
x2+x+3
与x轴相交于点A、B,与y轴相交于点C,顶点为点D,对称轴l与直线BC相交于点E,与x轴相交于点F.
(1)求直线BC的解析式;
(2)设点P为该抛物线上的一个动点,以点P为圆心,r为半径作⊙P
①当点P运动到点D时,若⊙P与直线BC相交,求r的取值范围;
②若r=
4
5
5
,是否存在点P使⊙P与直线BC相切?若存在,请求出点P的坐标;若不存在,请说明理由.
提示:抛物线y=ax2+bx+x(a≠0)的顶点坐标(-
b
2a
4ac-b2
4a
),对称轴x=-
b
2a

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c经过A(-2,0)、B(4,0)、C(0,4)三点.
(1)求此抛物线的解析式;
(2)此抛物线有最大值还是最小值?请求出其最大或最小值;
(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中给定以下五个点A(-3,0),B(-1,4),C(0,3),D(
1
2
7
4
),E(1,0).
(1)请从五点中任选三点,求一条以平行于y轴的直线为对称轴的抛物线的解析式;
(2)求该抛物线的顶点坐标和对称轴,并画出草图.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度,把Rt△OAB沿x轴正方向平移1个单位长度后得△AA1B1
(1)求以A为顶点,且经过点B1的抛物线的解析式;
(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、C的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案