精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y1=x+2与双曲线 相交于A,B两点其中点A的纵坐标为3,点B的纵坐标为﹣1.

(1)求k的值;
(2)若y1<y2 , 请你根据图象确定x的取值范围.

【答案】
(1)解:把y=3代入y1=x+2得x=1,

把y=﹣1代入y1=x+2得x=﹣3,

∴A(1,3),B(﹣3,﹣1),

把A(1,3)代入 得k=3


(2)解:由图象知:当x<﹣3,或0<x<1时,y1<y2

即若y1<y2,x的取值范围为:x<﹣3,或0<x<1


【解析】(1)由A、B在直线y1=x+2上,可求出A、B两点的坐标,再由待定系数法可求出反比例函数的解析式;
(2)结合图像可直接写出.
【考点精析】解答此题的关键在于理解确定一次函数的表达式的相关知识,掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:

(1)此次共调查了多少名同学?

(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数;

(3)如果该校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°= 0.53,cos32°= 0.85,tan32°= 0.62)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】排水管的截面为如图所示的⊙O,半径为5m,如果圆心O到水面的距离是3m,那么水面宽AB=m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.

请你结合图中信息,解答下列问题:

(1)本次共调查了 名学生;

(2)被调查的学生中,最喜爱丁类图书的有 人,最喜爱甲类图书的人数占本次被调查人数的 %;

(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明、小丽两位同学学习数学都养成了良好的预习习惯.某天他俩预习了课本第107页上的问题3,题目如下:

某小组计划做一批中国结,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少15.该小组共有多少人?计划做多少个中国结

他俩都没有看课本上的解答过程,而是独立思考,分别列出了如下尚不完整的方程:

小明: 小丽:.

1)在小明、小丽所列的方程中,“□”中是运算符号, 中是数字,试分别指出未知数表示的意义;

2)试选择一种方法,将问题3解答完整.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.

(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,若AB=6,tan∠CDA= ,依题意补全图形并求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点P为∠ACB平分线上的一点,∠ACB=60°,PDCADPECBE,点M是线段CP上的一动点(不与两端点CP重合),连接DMEM.

(1)求证:DM=EM;

(2)当点M运动到线段CP的什么位置时,四边形PDME为菱形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数 的图象与性质.
小慧根据学习函数的经验,对函数 的图象与性质进行了探究.
下面是小慧的探究过程,请补充完成:
(1)函数 的自变量x的取值范围是
(2)列出y与x的几组对应值.请直接写出m的值,m=

x

-3

-2

0

1

1.5

2.5

m

4

6

7

y

2.4

2.5

3

4

6

-2

0

1

1.5

1.6


(3)请在平面直角坐标系 , 描出以上表中各对对应值为坐标的点,并画出该函数的图象;

(4)结合函数的图象,写出该函数的两条性质:

查看答案和解析>>

同步练习册答案