精英家教网 > 初中数学 > 题目详情
67、如图,DE∥BC,AD:DB=2:3,则△ADE与△ABC的周长之比为
2:5
,面积之比为
4:25
分析:根据相似三角形的判定定理可知ADE∽△ABC,再根据相似三角形的性质即可解答.
解答:解:∵DE∥BC,,
∴ADE∽△ABC
∵AD:DB=2:3,
∴AD:AB=2:5,
∴△ADE与△ABC的周长之比为2:5,面积之比为22:52=4:25.
点评:本题考查对相似三角形性质的理解:
(1)相似三角形周长的比等于相似比;
(2)相似三角形面积的比等于相似比的平方;
(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,DE∥BC,且DB=AE,若AB=5,AC=10,则AE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,DE∥BC,将△ABC沿DE所在的直线折叠,点A正好落在BC边上F处,若∠B=40°,则∠BDF=
100
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,DE∥BC,AD:DB=3:4,则△ADE与△ABC的周长之比为
 
;面积之比为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•广西)如图,DE∥BC,AB=15,AC=9,BD=4,那么AE=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•河北)已知:如图,DE∥BC,AD=3.6,DB=2.4,AC=7.求EC的长.

查看答案和解析>>

同步练习册答案