分析 根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,-2)和(0,-1)之间可以判断c的大小得出④的正误.
解答 解:①∵函数开口方向向上,
∴a>0;
∵对称轴在y轴右侧,
∴ab异号,
∵抛物线与y轴交点在y轴负半轴,
∴c<0,
∴abc>0,
故①正确;
②∵图象与x轴交于点A(-1,0),对称轴为直线x=1,
∴图象与x轴的另一个交点为(3,0),
∴当x=2时,y<0,
∴4a+2b+c<0,
故②错误;
③∵图象与x轴交于点A(-1,0),
∴当x=-1时,y=(-1)2a+b×(-1)+c=0,
∴a-b+c=0,即a=b-c,c=b-a,
∵对称轴为直线x=1
∴-$\frac{b}{2a}$=1,即b=-2a,
∴c=b-a=(-2a)-a=-3a,
∴4ac-b2=4•a•(-3a)-(-2a)2=-16a2<0
∵16a>0
∴4ac-b2<16a
故③正确
④∵图象与y轴的交点B在(0,-2)和(0,-1)之间,
∴-2<c<-1
∴-2<-3a<-1,
∴$\frac{1}{3}$<a<$\frac{2}{3}$;
故④正确
⑤∵a>0,
∴b-c>0,即b>c;
故⑤正确;
故答案为①③④⑤.
点评 本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点位置确定.利用数形结合的思想是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
时间 | 第一个月 | 第二个月 | 清仓时 |
单价(元) | 80 | 80-x | 40 |
销售量(件) | 200 | 200+20x | 400-20x |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com