精英家教网 > 初中数学 > 题目详情
在△ABC中,∠BAC=90°,AB=AC,点D是线段BC上的一个动点(不与点B重合).DE⊥BE于E,∠EBA=
1
2
∠ACB,DE与AB相交于点F.
(1)当点D与点C重合时(如图1),探究线段BE与FD的数量关系,并加以证明;
(2)当点D与点C不重合时(如图2),试判断(1)中的猜想是否仍然成立,请说明理由.

精英家教网

精英家教网

(1)猜想BE=
1
2
FD,
证明:如图,延长CA、BE相交于G,
∵在△ABC中,∠BAC=90°,AB=AC,
∴∠ACB=∠ABC=45°,
∵∠EBA=
1
2
∠ACB,
∴∠EBA=22.5°,
∴∠GBC=67.5°,
∴∠G=67.5°,
∴∠G=∠GBC,
∴CG=BC,
∵CE⊥BE,
∴∠ACE=
1
2
∠ACB,BE=
1
2
BG,
∴∠ACE=∠EBA.
在△ABG和△ACF中
∠GAB=∠FAC
AB=AC
∠ABG=∠ACF

∴△ABG≌△ACF(ASA),
∴BG=CF
∴BE=
1
2
FC,
即BE=
1
2
FD.

(2)成立,
理由是:过D作DHCA交BA于M,交BE的延长线于H,
则∠BMD=∠A=90°,∠MDB=∠C=45°,
∴∠MBD=∠MDB=45°,
∴MB=MD,
∵∠EBA=
1
2
∠ACB,
∴∠EBA=
1
2
∠MDB=22.5°,
∴∠HBD=∠H=67.5°,
∴DB=DH,
∵DE⊥BE,
∴∠HDE=
1
2
∠HDB,BE=
1
2
BH,
∴∠HBM=∠FDM,
在△HMA和△FMD中
∠BMH=∠DMF
MB=MD
∠HBM=∠FDM

∴△HMA≌△FMD(ASA)
∴BH=DF,
∴BE=
1
2
FD.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动精英家教网;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.
(1)当x为何值时,PQ∥BC;
(2)当
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.
(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;

(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;
(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以4cm/s的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ;
(2)△APQ能否与△CQB相似?若能,求出x的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求证:DE2=AD2+EC2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以每秒4cm,的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ
(2)当x为何值时,PQ∥BC
(3)△APQ能否与△CQB相似?若能,求出x的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案