ÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¶þ´Îº¯Êýy=a£¨x-2£©2-1ͼÏóµÄ¶¥µãΪP£¬ÓëxÖá½»µãΪA¡¢B¾«Ó¢¼Ò½ÌÍø£¬ÓëyÖá½»µãΪC£¬Á¬½ÓBP²¢ÑÓ³¤½»yÖáÓÚµãD£®
£¨1£©Ð´³öµãPµÄ×ø±ê£»
£¨2£©Á¬½ÓAP£¬Èç¹û¡÷APBΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÇóaµÄÖµ¼°µãC¡¢DµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Á¬½ÓBC¡¢AC¡¢AD£¬µãE£¨0£¬b£©ÔÚÏ߶ÎCD£¨¶ËµãC¡¢D³ýÍ⣩ÉÏ£¬½«¡÷BCDÈƵãEÄæʱÕë·½ÏòÐýת90¡ã£¬µÃµ½Ò»¸öÐÂÈý½ÇÐΣ®Éè¸ÃÈý½ÇÐÎÓë¡÷ACDÖصþ²¿·ÖµÄÃæ»ýΪS£¬¸ù¾Ý²»Í¬Çé¿ö£¬·Ö±ðÓú¬bµÄ´úÊýʽ±íʾS£¬Ñ¡ÔñÆäÖÐÒ»ÖÖÇé¿ö¸ø³ö½â´ð¹ý³Ì£¬ÆäËüÇé¿öÖ±½Óд³ö½á¹û£»Åжϵ±bΪºÎֵʱ£¬Öصþ²¿·ÖµÄÃæ»ý×î´óд³ö×î´óÖµ£®
·ÖÎö£º£¨1£©¸ù¾ÝÅ×ÎïÏߵĶ¥µãʽ½âÎöʽ¿ÉµÃ³öPµÄ×ø±êΪ£¨2£¬-1£©£®
£¨2£©Èç¹û¡÷APBÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÄÇô¸ù¾ÝPµÄ×Ý×ø±ê²»ÄѵóöAB=2£¬¸ù¾Ý¶Ô³ÆÖáx=2¿ÉµÃ³öA£¬BµÄ×ø±ê·Ö±ðΪ£¨1£¬0£©£¨3£¬0£©£®È»ºó¿É¸ù¾ÝA£¬BµÄ×ø±êÓôý¶¨ÏµÊý·¨Çó³öÅ×ÎïÏߵĽâÎöʽ£®Ò²¾ÍÄܵóöaµÄÖµºÍCµãµÄ×ø±ê£®
ÇóDµã×ø±êʱ£¬¿É¸ù¾Ý¡ÏABP=45¡ã£¬¼´Èý½ÇÐÎOBDÊǵÈÑüÖ±½ÇÈý½ÇÐÎÀ´½â£®´ËʱOB=OD£¬BµãµÄºá×ø±êµÄ¾ø¶ÔÖµ¾ÍÊÇDµãµÄ×Ý×ø±êµÄ¾ø¶ÔÖµ£¬Óɴ˿ɵóöDµÄ×ø±ê£®
£¨3£©µ±ÐýתºóAÔÚC¡äD¡äÉÏʱ£¬EµãºÍOÖغϴËʱb=0£»µ±ÐýתºóAÔÚB¡äD¡äÉÏʱ£¬´Ëʱ¿ÉÇóµÃOE=1£¬¼´b=-1£®Òò´Ë¿É·ÖÈýÖÖÇé¿ö½øÐÐÌÖÂÛ£º
¢Ùµ±0¡Üb£¼3ʱ£¬ÐýתºóµÄ¡÷B¡äC¡äD¡äÓë¡÷ACDµÄÖصþ²¿·ÖÊǸöÈý½ÇÐΣ¬Èç¹ûÉèC¡äD¡äÓëAC½»ÓÚM£¬ÄÇôÖصþ²¿·Ö¾ÍÊÇ¡÷CEMµÄÃæ»ý£®¿ÉÏÈÇó³öEMµÄ³¤£¬È»ºóÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½µÃ³öS£¬bµÄº¯Êý¹Øϵʽ£®
¢Úµ±-1£¼b£¼0ʱ£¬ÐýתºóµÄ¡÷B¡äC¡äD¡äÓë¡÷ACDµÄÖصþ²¿·ÖÊÇÎå±ßÐΣ¬ÓÉÓÚÎå±ßÐβ»ÊǹæÔòµÄͼÐΣ¬Òò´Ë¿ÉÏȸù¾ÝAC£¬D¡äB¡ä£¬ADµÄÖ±ÏߵĽâÎöʽÇó³öÐýתºóµÃ³öµÄÈý½ÇÐÎÓëACDµÄ¸÷±ßµÄ½»µãµÄ×ø±ê£¬È»ºó¸ù¾ÝÆäËû¹æÔòͼÐεÄÃæ»ýµÄ¡°ºÍ£¬²î¡±¹ØϵÀ´Çó³öÎå±ßÐεÄÃæ»ý£¬¼´¿ÉµÃ³öS£¬bµÄº¯Êý¹Øϵʽ£®
¢Ûµ±-3£¼b¡Ü-1ʱ£¬ÐýתºóµÄ¡÷B¡äC¡äD¡äÓë¡÷ACDµÄÖصþ²¿·ÖΪËıßÐΣ¬¿É·ÂÕբڵĽⷨÇó³ö´ËʱS£¬bµÄº¯Êý¹Øϵʽ£®
×ÛÉÏËùÊö¿ÉµÃ³öbµÄ²»Í¬È¡Öµ·¶Î§ÄÚ£¬S£¬bµÄº¯Êý¹Øϵʽ£¬È»ºó¸ù¾ÝµÃ³öµÄº¯ÊýµÄÐÔÖʼ´¿ÉµÃ³öSµÄ×î´óÖµ£®
½â´ð£º½â£º£¨1£©P£¨2£¬-1£©

£¨2£©ÒòΪ¡÷APBΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬Pµã×ø±êΪ£¨2£¬-1£©
ËùÒÔAB=2£¬
ËùÒÔA£¨1£¬0£©£¬B£¨3£¬0£©
½«Aµã×ø±ê´úÈë¶þ´Îº¯Êýy=a£¨x-2£©2-1µÃ£º
0=a£¨1-2£©2-1£¬
ËùÒÔa=1
ËùÒÔ¶þ´Îº¯ÊýΪ£ºy=x2-4x+3
ËùÒÔC£¨0£¬3£©£¬
ËùÒÔOC=OB£¬¡ÏOBC=45¡ã
ÓÖÒòΪ¡ÏABP=45¡ã£¬
ËùÒÔ¡ÏCBD=90¡ã£¬¡ÏBCO=45¡ã£¬
ËùÒÔ¡÷BCDΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
ËùÒÔD£¨0£¬-3£©£»

£¨3£©¢Ùµ±0¡Üb£¼3ʱ£¬ÐýתºóµÄ¡÷B¡äC¡äD¡äÓë¡÷ACDµÄÖصþ²¿·ÖΪ¡÷CEM£®
¾«Ó¢¼Ò½ÌÍø
ÒòΪCE=C¡¯E£¬
ËùÒÔCµãÇ¡ºÃÔÚÖ±ÏßB¡äC¡äÉÏ£¬
CE=3-b£¬ACÖ±Ïß·½³ÌΪ£ºy=3-3x£¬
E£¨0£¬b£©ËùÒÔEM=
3-b
3

ËùÒÔÖصþ²¿·Ö¡÷CEMµÄÃæ»ýΪ£º
S=
1
2
¡Á£¨3-b£©¡Á
3-b
3
=
(3-b)2
6
£¨0¡Üb£¼3£©£»
¾«Ó¢¼Ò½ÌÍø¢Úµ±-1£¼b£¼0ʱ£¬ÐýתºóµÄ¡÷B¡äC¡äD¡äÓë¡÷ACDµÄÖصþ²¿·ÖΪÎå±ßÐÎEMANQ£¬
ÒòΪED=ED¡ä=EQ£¬
ËùÒÔD¡¯µãÇ¡ºÃÔÚÖ±ÏßBDÉÏ£¬DE=EQ=3+b£¬
ËùÒÔQ£¨0£¬3+2b£©£¬D¡ä£¨3+b£¬b£©£¬
CQ=3-£¨3+2b£©=-2b£¬
ACÖ±Ïß·½³ÌΪ£ºy=3-3x£¬
ADÖ±Ïß·½³ÌΪ£ºy=3x-3£¬
D¡¯QÖ±Ïß·½³ÌΪ£ºy=3+2b-x£¬
ËùÒÔEM=
3+b
3
£¬N£¨-b£¬3+3b£©
ËùÒÔÖصþ²¿·ÖÎå±ßÐÎEMANQµÄÃæ»ýΪ£º
S=S¡÷ACD-S¡÷CQN-S¡÷EMD
=
1
2
¡Á6¡Á1-
1
2
¡Á£¨-2b£©¡Á£¨-b£©-
1
2
¡Á£¨3+b£©¡Á
3+b
3

=-
7b2
6
-b+
3
2
£¨-1£¼b£¼0£©£»
¢Ûµ±-3£¼b¡Ü-1ʱ£¬ÐýתºóµÄ¡÷B¡¯C¡¯D¡¯Óë¡÷ACDµÄÖصþ²¿·ÖΪËıßÐÎEMNQ£»
ÒòΪED=ED¡¯=EQ£¬
ËùÒÔD¡äµãÇ¡ºÃÔÚÖ±ÏßBDÉÏ£¬DE=EQ=3+b£¬
ËùÒÔQ£¨0£¬3+2b£©£¬D¡ä£¨3+b£¬b£©£¬
DQ=£¨3+2b£©-£¨-3£©=6+2b£¬
ADÖ±Ïß·½³ÌΪ£ºy=3x-3£¬
D¡äQÖ±Ïß·½³ÌΪ£ºy=3+2b-x£¬
ËùÒÔEM=
3+b
3
£¬N£¨
3+b
2
£¬
3(1+b)
2
£©£¬
ËùÒÔÖصþ²¿·ÖËıßÐÎEMNQµÄÃæ»ýΪ£º
S=S¡÷DNQ-S¡÷EMD=
1
2
¡Á(6+2b)¡Á
3+b
2
-
1
2
¡Á(3+b)¡Á
3+b
3
=
(3+b)2
3
£¨-3£¼b¡Ü1£©£¬
ËùÒÔÖصþ²¿·ÖµÄÃæ»ýΪ£ºS=
(3-b)2
6
(0¡Üb£¼3)
-
7b2
6
-b+
3
2
(-1£¼b£¼0)
(3+b)2
3
(-3£¼b¡Ü-1)
£¬
µ±0¡Üb£¼3ʱ£¬b=0ʱ£¬S×î´ó£¬ÇÒS×î´ó=
3
2
£¬
µ±-1£¼b£¼0ʱ£¬S=-
7b2
6
-b+
3
2
=--
7
6
(b+
3
7
)2+
12
7
£¬
b=-
3
7
ʱ£¬S×î´ó£¬ÇÒS×î´ó=
12
7
£¬
µ±-3£¼b¡Ü-1ʱ£¬b=-1ʱ£¬S×î´ó£¬ÇÒS×î´ó=
4
3
£¬
×ÛÉÏËùÊö£ºµ±b=-
3
7
ʱ£¬S×î´ó=
12
7
£®
µãÆÀ£º±¾Ìâ×ÅÖØ¿¼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ¡¢Í¼ÐÎÐýת±ä»»µÈÖØҪ֪ʶµã£¬×ÛºÏÐÔÇ¿£¬ÄÜÁ¦ÒªÇó½Ï¸ß£®¿¼²éѧÉú·ÖÀàÌÖÂÛ£¬ÊýÐνáºÏµÄÊýѧ˼Ïë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ò»´Îº¯Êýy=kx+1µÄͼÏóÓë·´±ÈÀýº¯Êýy=
9x
µÄͼÏóÔÚµÚÒ»ÏóÏÞÏྫӢ¼Ò½ÌÍø½»ÓÚµãA£¬¹ýµãA·Ö±ð×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ãΪµãB¡¢C£®Èç¹ûËıßÐÎOBACÊÇÕý·½ÐΣ¬ÇóÒ»´Îº¯ÊýµÄ¹Øϵʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

5¡¢ÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãA¡¢BµÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©ºÍ£¨2£¬0£©£®ÔÂÑÀ¢ÙÈƵãB˳ʱÕëÐýת90¡ãµÃµ½ÔÂÑÀ¢Ú£¬ÔòµãAµÄ¶ÔÓ¦µãA¡äµÄ×ø±êΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ò»¿ÅÆå×Ó´ÓµãP´¦¿ªÊ¼ÒÀ´Î¹ØÓÚµãA£¬B£¬C×÷Ñ­»·¶Ô³ÆÌø¶¯£¬¼´µÚÒ»´Î´ÓµãPÌøµ½¹ØÓÚµãAµÄ¶Ô³ÆµãM´¦£¬µÚ¶þ´Î´ÓµãMÌøµ½¹ØÓÚµãBµÄ¶Ô³ÆµãN´¦£¬µÚÈý´Î´ÓµãNÌøµ½¹ØÓÚµãCµÄ¶Ô³Æµã´¦£¬¡­Èç´ËÏÂÈ¥£®
£¨1£©ÔÚͼÖбê³öµãM£¬NµÄλÖ㬲¢·Ö±ðд³öµãM£¬NµÄ×ø±ê£º
 
£®
£¨2£©ÇëÄãÒÀ´ÎÁ¬½ÓM¡¢NºÍµÚÈý´ÎÌøºóµÄµã£¬×é³ÉÒ»¸ö·â±ÕµÄͼÐΣ¬²¢¼ÆËãÕâ¸öͼÐεÄÃæ»ý£»
£¨3£©²ÂÏëһϣ¬¾­¹ýµÚ2009´ÎÌø¶¯Ö®ºó£¬Æå×Ó½«Â䵽ʲôλÖã®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÓÐÒ»×é¶Ô½ÇÏß³¤·Ö±ðΪ1£¬2£¬3µÄÕý·½ÐÎA1B1C1O¡¢A2B2C2B1¡¢A3B3C3B2£¬Æä¶Ô½ÇÏßOB1¡¢B1B2¡¢B2 B3ÒÀ´Î·ÅÖÃÔÚyÖáÉÏ£¨ÏàÁÚ¶¥µãÖغϣ©£¬ÒÀÉÏÊöÅÅÁз½Ê½£¬¶Ô½ÇÏß³¤ÎªnµÄµÚn¸öÕý·½ÐεĶ¥µãAnµÄ×ø±êΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©¾­¹ýA£¨-1£¬0£©¡¢B£¨3£¬0£©Á½µã£¬Å×ÎïÏßÓëyÖá½»µãΪC£¬Æ䶥µãΪD£¬Á¬½ÓBD£¬µãPÊÇÏ߶ÎBDÉÏÒ»¸ö¶¯µã£¨²»ÓëB¡¢DÖغϣ©£¬¹ýµãP×÷yÖáµÄ´¹Ïߣ¬´¹×ãΪE£¬Á¬½Ó¾«Ó¢¼Ò½ÌÍøBE£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£¬²¢Ð´³ö¶¥µãDµÄ×ø±ê£»
£¨2£©Èç¹ûPµãµÄ×ø±êΪ£¨x£¬y£©£¬¡÷PBEµÄÃæ»ýΪs£¬ÇósÓëxµÄº¯Êý¹Øϵʽ£¬Ð´³ö×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£¬²¢Çó³ösµÄ×î´óÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±sÈ¡µÃ×î´óֵʱ£¬¹ýµãP×÷xµÄ´¹Ïߣ¬´¹×ãΪF£¬Á¬½ÓEF£¬°Ñ¡÷PEFÑØÖ±ÏßEFÕÛµþ£¬µãPµÄ¶ÔÓ¦µãΪP'£¬ÇëÖ±½Óд³öP'µã×ø±ê£¬²¢ÅжϵãP'ÊÇ·ñÔÚ¸ÃÅ×ÎïÏßÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸