【题目】探索与运用:
(1)基本图形:如图①,已知OC是∠AOB的角平分线,DE∥OB,分别交OA、OC于点D、E.求证:DE=OD;
(2)在图②中找出这样的基本图形,并利用(1)中的规律解决这个问题:已知△ABC中,两个内角∠ABC与∠ACB的平分线交于点O,过点O作DE∥BC,交AB、AC于点D、E.求证:DE=BD+CE;
(3)若将图②中两个内角的角平分线改为一个内角(如图③,∠ABC)、一个外角(∠ACF)和两个都是外角(如图④∠DBC、∠BCE)的角平分线,其它条件不变,则线段DE、BD、CE的数量关系分别是:图③为 、图④为 :并从中任选一个结论证明.
【答案】(1)(2)(3)证明见解析
【解析】
试题分析:(1)根据角平分线的定义得到∠AOC=∠BOC,根据平行线的性质得到∠DEO=∠BOC,等量代换得到∠DEO=AOC,根据等腰三角形的判定即可得到结论;
(2)根据△ABC中,∠ABC和∠ACB的平分线相交于点O.求证∠DBO=∠OBC,∠ECO=∠BCO,再利用两直线平行内错角相等,求证出∠DOB=∠DBO,∠COE=∠BCO,即BD=DO,OE=CE,然后利用等量代换即可求出结论;
(3)选③证明:由(1)中证明可得:DB=DO,EO=EC,根据线段的和差即可得到结论
证明:(1)∵OC平分∠AOB,
∴∠AOC=∠BOC,
∵DE∥OB,
∴∠DEO=∠BOC,
∴∠DEO=AOC,
∴DE=OD;
(2)∵∠ABC和∠ACB的平分线相交于点O,
∴∠DBO=∠OBC,∠ECO=∠BCO,
∵DE∥BC,交AB于点D,交AC于点E.
∴∠DOB=∠DBO,∠COE=∠ECO,
∴BD=DO,OE=CE,
∴DE=BD+CE;
(3)图③:DE=BD﹣CE,图④:DE=BD+CE,
选③证明:
由(1)中证明可得:DB=DO,EO=EC,
∴DE=OD=OE=DB﹣CE.
故答案为:DE=BD﹣CE,DE=BD+CE.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5
(1)求3⊕(﹣2)的值;
(2)若3⊕x的值小于16,求x的取值范围,并在数轴上表示出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(14分)探究与发现:如图①,在Rt△ABC中,∠BAC=90°,AB=AC,点D在底边BC上,AE=AD,连结DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC (点B、C除外) 上运动时,试猜想并探究∠BAD与∠CDE的数量关系;
(3)深入探究:若∠BAC≠90°,试就图②探究∠BAD与∠CDE的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)
如图,已知AB∥CD,BE、CF分别平分∠ABC和∠DCB,求证:BE∥CF.
证明:
∵AB∥CD,(已知)
∴∠ =∠ .( )
∵ ,(已知)
∴∠EBC=∠ABC,(角的平分线定义)
同理,∠FCB= ∠BCD .
∴∠EBC=∠FCB.(等式性质)
∴BE∥CF.( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com